Introduction to Single-Cell
RNA-seq
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What can bulk RNA-seq vs single-cell RNA-seq help us determine?
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What can bulk RNA-seq vs single-cell RNA-seq help us determine?
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Image from 10X Genomics blog:
https://community.10xgenomics.com/t5/10x-Blog/Single-Cell-RNA-Seqg-An-Introductory-Overview-and-Tools-for/ba-p/547
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Single-cell RNA-seq quirks

Less starting material means:

e More PCR amplification (and its associated biases)

e More zero counts

o Biology - Not every gene is expressed in every cell
o Technical - Biased capture methods, Sequencing every RNA in every cell requires a lot more
sequencing

Choi et al. (Genome Biology, 2020) https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02103-2
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Single-cell gene mean density graph
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Single-cell gene mean density graph
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Single Cell Basic Set-ups

1. Tag-based scRNA-seq 2. Full-length scRNA-seq
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https://www.ncbi.nlm.nih.gov/pubmed/28091601 https://www.nature.com/articles/nprot.2014.006
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Cell Barcodes + Unique Molecular Identifiers (UMIs) are used
to label individual transcripts

Each droplet contains 1 Within each droplet, each bead Each transcript within a cell is
cell, all with the same contains millions of distinct tagged with a cell barcode and
cell barcode UMls unique molecular identifier
(UMI)
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Unique Molecular Identifiers (UMls):

a ‘snapshot’ of the original molecules in the pre-amplified cell
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Original image from: Islam et al. 2014 https://doi.org/10.1038/nmeth.2772
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Unique Molecular Identifiers (UMls):

a ‘snapshot’ of the original molecules in the pre-amplified cell
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Unique Molecular Identifiers (UMls):

a ‘snapshot’ of the original molecules in the pre-amplified cell
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Tag-Based scRNA-seq L
Pros: -
e Can profile up to millions of cells.
e Takes less computing power.
e Filestorage requirements are smaller.
e Much less expensive.
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Pros:

e Can profile up to millions of cells.
e Takes less computing power.

e Filestorage requirements are smaller.
e Much less expensive.

Cons:

e Moreintense 3' bias because sequencing is not bidirectional.
e Coverage is generally not as deep as full-length scRNA-seq,.
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Pre-processing scRNA-seq

Gene x Count Matrix

A,

Fastq Files

Step 1: Separate data by cell barcode and UMI
Step 2: Align reads to determine genes present in each cell
Step 3: Collapse duplicate UMI’s to create gene x count matrix

e Manydifferent pre-processing tools are available
e Cell Ranger, 10X supported tool, is popular mainly for being user friendly, but is

very slow (aligns to the entire genome)
e Alevinis afaster salmon based pre-processing tool (aligns to the transcriptome)

Comparison of common alignment tools: https://www.biorxiv.org/content/10.1101/2021.02.15.430948v2
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Resources for you in "00-scRNA-seq_introduction.md

e Hemburglab scRNA-seq training course

e ASAP: Automated Single-cell Analysis Pipeline is a web server that allows
you to process scRNA-seq data.

e Smith. Unique Molecular Identifiers - the problem, the solution and the
proof - article on background of UMIs

e Literature ontechnologies



