
Introduction to git
Part I

git is a version control system

Provides a framework for keeping snapshots, known in git as commits, of your
project over time

We call a given project that git is tracking a repository (repo for short)

Repositories are usually used to track code, but they can track other files

Image from git-scm

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

git repositories hold a living record of your project

By storing project snapshots, you can safely* overwrite
and/or remove files but still be able to recover them
*Unless you don't do it safely

Although git is not technically a backup, it's not not a
backup!

Image from PhD Comics
Image from Atlassian

https://phdcomics.com/comics/archive.php?comicid=1531
https://www.atlassian.com/git/tutorials/saving-changes/git-commit

GitHub is a popular website for hosting and managing
git repositories

Image modified from https://www.geekboots.com/story/what-is-the-difference-between-bitbucket-github-and-gitlab

https://www.geekboots.com/story/what-is-the-difference-between-bitbucket-github-and-gitlab

git is both a powerful individual and collaborative
tool

Working independently in a git repository and with a team can look a little
different!

● We'll come back to different approaches for collaborative git workflows later

For the individual, git provides a record of your work, allows you to make changes
without losing past work (reversion is possible!)

For the team, git provides a common framework and structure for collaborating
without conflicts (if properly coordinated!)

● Some project management is baked into git and/or GitHub, but other aspects you'll need to

bring to the table yourself

git repositories are similar to lab notebooks

If used well, git (along with certain GitHub features!) can store a precise history of
project development and changes, not unlike a lab notebook

But without any context, this history has limited utility!
● Why did you write the code? What role does it play in your project?

● How does this code fit into the overall project? How does it relate to other pieces of code?

● Does the code output results, figures, etc? Why do you need those results? How do you

interpret those results?

● What dependencies/environment are needed to be able to run the code?

● How do you run the code? How can others run the code?
Always 👏 Be 👏

Documenting

Documentation is
critical for you, your
team, and the broader
research community.

What should you add to a repository?

Code, sometimes results, and sometimes data
● In particular for scientific analyses, you may have figures and tables that code creates

● Depending on the scope & size of results/data files, they may or may not be suitable for a repository

A LICENSE file
● Protects both the rights of you (the authors) and the code itself

● If you are writing software, make sure that your LICENSE is compatible with your dependencies

● https://choosealicense.com/

That's right you guessed it - documentation
● What are the contents of your repository? How do you navigate the repository?

● What is the relationship among pieces of code? What is the relationship between code and other

types of files?

● Are there any specific contribution guidelines folks need to follow?

https://choosealicense.com/

What shouldn't you add to a repository?

Large files: GitHub cannot accommodate files >= 100 MB without extra (less
reproducible) steps

● If your colleague has stored large files but you haven't taken the extra steps, you're going to

have a bad time.

Unreleased/private data or results files, including PPI/PHI data or results
● Although it is possible to delete sensitive data from a repository's history, you really don't want

to find yourself in that position

Any items that you don't have the permission to distribute
● Always check the LICENSE details of your dependencies, third-party datasets, etc.

git repositories are not a replacement for project
management tools

Think of git & GitHub as providing complementary frameworks to your overall
project management strategy

You'll also need to develop (and document!) external processes that help your team
work together in git & GitHub

The fundamental git flow

Creating a repository

You can create repositories locally, but it's usually easier to make them
on GitHub (github.com/new) and then clone them to your computer.

https://github.com/new

Set up your credentials with SSH keys

Reference:
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

The Data Lab has started using 1Password to manage creds and it's 🔥🔥

https://developer.1password.com/docs/ssh/

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh
https://developer.1password.com/docs/ssh/

Clone the repository to "download" it

You only do this one time.

cd directory/to/store/your/repo

git clone git@github.com/ACCOUNT-NAME/REPO-NAME

Future interaction between your remote and local repositories is done with…

● git push: Send changes from local repo to remote repo
● git pull: Get changes from remote repo into your local repo

The "stage/commit/push" flow

1. Pull changes from GitHub to make sure your local repo is
up-to-date, and ensure you're in the right branch (stay tuned!)

2. Make code changes, in small bites!
3. Stage the changes you want to be part of the next commit

a. Stage with git add, git rm, etc.

b. Best practice to stage one new/modified/removed file at a time to avoid

problems

4. Commit your code changes with an informative message
a. Commit with git commit -m "informative message"*

(*we know there are lots of choices here!)

5. Push your local commit(s) to the remote repository you cloned
from GitHub

a. Push with git push

When it comes to commits, less is more

Smaller units of work are better for…
● You, when writing your code

● You, when reviewing someone else's code

● Your teammate, when reviewing your code

If you are reviewing someone's work, which commit message is most helpful?
● All the work I did on Tuesday
● Update notebook
● Modified notebook to change plot size

Which scenario is easier to look through?
● 1-3 changed files in a commit, or 25 changed files

● 400 lines of new code, or 4000 lines of new code
https://xkcd.com/1296/

https://xkcd.com/1296/

We often like to work in feature branches

Collaborative work in different branches is a key feature* of git version control
*Pun intended, with apologies.

We'll talk much more about branches soon!

Images from Atlassian (L) (R)

(formerly known as master)

https://www.atlassian.com/git/tutorials/using-branches
https://www.atlassian.com/git/tutorials/using-branches/git-merge

The unsung heroes git diff and git status
git diff should be run for each change before you stage it
● You think you know what code you've written, but you have no idea.
● git diff alone will show you changes for all modified files

● git diff <modified file> will show just your file of interest

git status should be run ~as often as possible, and then maybe more. It tells you…
● Which branch you are on

● Which files are modified/added/removed but unstaged

● Which changes are staged but not committed

● How many local (unpushed) commits you have

● 🚨 Protip! I have this alias on every machine I use, and I type it constantly: alias gst="git
status"

The improved "stage/commit/push" flow

1. Run git status
2. Make code changes

3. Run git status
4. Stage the changes you want to be part of the next commit

a. git diff first, make any necessary changes, and then stage

5. Run git status
6. Commit your code changes with an informative message

7. Run git status
8. Push your local commit(s) to the remote repository you cloned from GitHub

9. Run git status

Safely undoing changes: A non-comprehensive
introduction
Woops! I modified a file that I didn't mean to modify, and I know this because I ran git
status

● git checkout <filename>

● git restore <filename> (git >= 2.23)

Woops! I committed a file that I didn't mean to modify, and I know this because I ran git
status

● git restore --staged <filename>

Woops! I staged files that I wasn't ready to stage yet, which I know because I ran git
status; can I undo the staging?

● git reset
● See here for more ways to use git reset, some of which are ⚠ destructive (will undo previous

commits!)

https://www.atlassian.com/git/tutorials/undoing-changes/git-reset

Woops! My commit message should have been different!
● git commit --amend

Woops! I want to undo the changes in a previous commit, but still preserve the project
history and avoid destructive actions!

● git revert <commit hash>

For more inspiration and/or commiseration, may I suggest https://dangitgit.com/

Safely undoing changes: A non-comprehensive
introduction

https://dangitgit.com/

Using .gitkeep files

git, in general, does not store empty directories, but sometimes we need them

By convention (not a formal git feature!), we add empty hidden files called
.gitkeep into empty directories we want to retain. For example….

● A data/ directory that stores data locally and that code expects, but data itself is far too big to

actually keep under version control

● Directories that you create for future use when setting up your project, but don't yet have

contents, e.g. plots/

Using .gitignore files

.gitignore files are hidden files that tell git to ignore certain files. They can stay
in your repository folder, but won't be part of the repository itself.

Telling git to ignore certain files will….

● Make git stop telling you about untracked changes when you run git
status

● Prevent you from staging/committing these files by accident, and running git
status liberally will help key you into which files need to be ignored

Using .gitignore files

You can have many .gitignore files in a repo (in different directories) and/or a
single .gitignore at the top of your repo that all subdirectories "inherit"

● You can also have a global file in ~/.gitignore that will apply to all repos on your computer

● ⚠But caution: Your collaborators probably don't have that file.

● ⚠⚠But caution again: You probably don't have that file synced up among machines (e.g., your

computer and your lab server)

🚨 Protip! Working on a Mac? .DS_Store does not spark joy. Ignore it!

GitHub has some useful .gitignore templates

This is one example of a GitHub feature that helps you organize your projects!

Let's see some git in action

