Introductiontogit
Part ||

Childhood Cancer y Lf\nllelﬁge
emo:
Data- Lab Stend @

Let's begin by exploring a real life GitHub repository

https://github.com/alexslemonade/scpca-nf

..butfirst,aplug:https://scpca.alexslemonade.orqg/

https://github.com/alexsLemonade/scpca-nf
https://scpca.alexslemonade.org/

Working with multiple branches

Why and when do we use feature branches?

There are several different models for git workflows (stay tuned!), but all make use
of a standard paradigm:

The Project Truth lives inmain (formerly master)

Code is developed in different branches, which over time get merged into the main branch

We want to avoid working directly in themain branch

All of this helps us modularize project development, keep a clear project history, and avoid conflicts with our
collaborators

We use the term feature branch because each branch should have a specific scope
that is limited to a given feature

When you create a branch, it literally branches off the branch you are in when you
create it. This is called our base branch.

We often work with multiple branches at a time

You might be working with more than one feature branch, and your teammates are
working in their own branch(es) as well
O

O

i

Image adapted from Atlassian

Tips for success:

e Always know what branch you're working in
e Before creating a branch, be cautious you are creating it from the correct base and that the base is up-to-date
e Asyouwork, aim to keep your feature branch as up-to-date with its base as possible

...And how do you set yourself up for success? That's right, more git status

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Use an informative name for your feature branch

Informative names help you stay on track and organize your work, and help your
teammates quickly get a sense of the scope of your work when reviewing your code

Let's consider the code we wrote for the histogram demonstration....

e Bad names If you use one of these names, I'll see you in your nightmares.
o feature, bins, patch-1

e Abetter name
o add-bins-option-to-histogram

e Aneven better name
o <username>/add-bins-option-to-histogram

e Ladies and gentlemen and however you identify, we have a winner
o <username>/<issue #>-add-bins-option-to-histogram

Creating and switching between branches

See all local branches with git branch -a

To switch to a different branch...
e git checkout <different-branch>
e git switch <different-branch> (git >= 2.23)

To create a new branch...
e First, make sure you are in right branch you as your base with (surprise!) git status, and switch as

needed!
e git branch <new-branch-name>

More fun with branches

¢ To simultaneously create and switch into a new branch...
e git checkout -b <new-branch-name>
e git switch -c <new-branch-name> (git >= 2.23)

Change your branchname: git branch -m <updated-branch-name>
/L, Caution! If you've already pushed your branch, this will not rename the remote branch. You'll also need
something like...

git push origin -u <updated-branch-name> # change your remote target branch
git push origin --delete <original-branch-name> # delete original remote branch

Help GitHub help you: Protect your main branch

i1 Pullrequests 3 Zenhub ~(® Actions [Projects [Wiki @ Security [~/ Insights 3 Settings

& General Branch protection rules Add rule

Access

main Currently applies to 1 branch Edit Delete
A Collaborators and teams

Code and automation

I ¥ Branches

© Tags
C+ Rules A4
® Actions v

& Webhooks
Environments
S Codespaces

5 Pages

Help GitHub help you: Protect your main branc

Branch protection rule
Branch name pattern *
main

Applies to 1 branch

main

Protect matching branches

Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull request before they can be
merged into a branch that matches this rule.

Require approvals
When enabled, pull requests targeting a matching branch require a number of approvals and no changes requested before
they can be merged.

Required number of approvals before merging: 1+

[] Dismiss stale pull request approvals when new commits are pushed
New reviewable commits pushed to a matching branch will dismiss pull request review approvals.

[] Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

[] Restrict who can dismiss pull request reviews
Specify people, teams, or apps allowed to dismiss pull request reviews.

] Allow specified actors to bypass required pull requests
Specify people, teams, or apps who are allowed to bypass required pull requests.

[] Require approval of the most recent reviewable push
Whether the most recent reviewable push must be approved by someone other than the person who pushed it.

[Require status checks to pass before merging
Choose which status checks must pass before branches can be merged into a branch that matches this rule. When enabled,
commits must first be pushed to another branch, then merged or pushed directly to a branch that matches this rule after
status checks have passed.

[C] Require conversation resolution before merging
When enabled, all conversations on code must be resolved before a pull request can be merged into a branch that matches
this rule. Learn more.

] Require signed commits
Commits pushed to matching branches must have verified signatures.

[Require linear history
Prevent merge commits from being pushed to matching branches.

(] Require deployments to succeed before merging
Choose which environments must be successfully deployed to before branches can be merged into a branch that matches
this rule.

[Lock branch
Branch is read-only. Users cannot push to the branch.

Do not allow bypassing the above settings
The above settings will apply to administrators and custom roles with the "bypass branch protections" permission.

[J Restrict who can push to matching branches
Specify people, teams, or apps allowed to push to matching branches. Required status checks will still prevent these people,
teams, and apps from merging if the checks fail.

Rules applied to everyone including administrators

[Allow force pushes
Permit force pushes for all users with push access.

[J Allow deletions
Allow users with push access to delete matching branches.

Merging feature branch changes back intomain

Merging itself creates a "merge commit" within the main branch (or, in whichever
branch you are merging into)

If the feature branch is as up-to-date as possible with main, merge conflicts will be

much less likely!

/'\

Main tip

Common base

v

New merge
commit

N2

Image from Atlassian

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Keeping your feature branch up-to-date with main

1. Locally, switch back to the main branchgit switch main

2. Pulldownmain branchchanges:git pull main
e Thiswill update your local main branch to match the remote main branch

3. Switch back to your feature branch: git switch <feature-branch>

4. Mergeinthemain branchupdates:git merge main
e You may enter vi as part of the commit that this command creates! Just :wq outta there!

Some caveats to the previous slide!

We assumed that base branch is always main, but this is not always the case! We'll
see later a couple scenarios where your base branch is not main, but the same
concepts will apply.

This process will differ a little if you are working in a fork! You first have to keep your
main branch up-to-date with the upstream main branch:

git switch main # switch to your main branch
git merge upstream/main # merge the upstream main into your local main branch
git push # update your fork's remote main

Now, you can sync your feature branch with your main branch
=

Merging and rebasing can be used to combine branch

histories
Main W
Feature branch created here/
git merge git rebase
Retains full project history Overwrites project history

0—07® Camoam
05 o—-o0—" 9,—O—O—f

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Remember Atlassian's golden rule of rebasing

So, before you run git rebase, always ask yourself, “Is anyone else looking at this branch?”

AKA, neveruse git rebaseinany kind of collaborative setting
e Publicrepositories with potential for open contribution
e Private repositories within your organization, even if not meant for external use or consumption

Main

N

O O—®
T

Your

J
\ branlch

Everybody else’s

: main branch
Main

Image & quote from Atlassian

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Helpful commands when working in multiple branches

e git stash EDDD
= <>

o Usethistosave "work in progress" code for later without committing

o This commands adds changes since the last commit to the stash, which you can "apply" when you
are ready

e git cherry-pick
o This command will copy (not move!) commit(s) from one branch to another

o The same commit(s) will now exist in both branches, meaning this command results in duplicate
history

o But, you can clean up after yourself if you absolutely need to (we'll see an example...now!)

Image from Atlassian

https://www.atlassian.com/git/tutorials/cherry-pick

Demo: Working with multiple branches

