
Ensuring reasonable scopes
for your PRs

Recall, a good pull request should be…

Focused on a single task

Manageable for review without overly fatiguing your reviewer

Here, we'll offer tips and strategies that will help to achieve these goals

Plan ahead, but it's ok to revise your plan

…After some discussion…

You can break out smaller issues from the big one

Don't commit what you shouldn't commit

Everybody, say it with me! Never add/commit anything without running your two
new favorite commands, git status & git diff
● You may find an accidentally modified file that needs to be restored (git restore <file>)

When opening the PR, but before filing the PR, make sure the "Files Changed" view

looks as you expect
● This is worth taking the extra time to do!

● Most of the time, I find something to tweak before actually filing the PR. This helps my reviewer out,

which helps the overall process move forward smoothly.

And conversely, be sure to commit what you should
commit

Before filing the PR, go back to the issue and make sure you have stayed in scope
● Are there more tasks you should have done but forgot to do?

● Are there extra tasks you did that are beyond the scope of the associated issue?

Remember, you can "undo" commits (but still preserve the commit history) with git
revert <commit-to-revert>
● This is another reason it helps to have small commits with informative messages that actually

match the work you did

Creating stacked pull requests

Setting up for a stacked pull request

Below feature is the base branch for feature
● In other words, feature is "stacked on" feature

● When feature is ready to go, it is merged into feature

● Then only feature will need to be merged into main

Image adapted from Atlassian

Rather than branching off of main, you create a new branch off of your feature

branch

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

The merge order matters

As a consequence, feature now contains work from two branches, which makes the
remaining PR less focused and possibly confusing for your reviewer!

Tip: It will help to wait for reviews on both PRs to come in before doing any merging.

Image adapted from Atlassian

Below, feature is merged into feature first

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

The merge order matters

● In this case, each PR retains its original focus/scope

● The base branch for feature will automagically 🪄get changed to main in the PR, if and only if the
feature branch is deleted

● We'll see this in action soon via live demo!

Image adapted from Atlassian

Unlike the image below, we could have merged feature into main first

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Why should you stack your branches?

Sometimes, what seems like a "single task" actually has several moving parts that, if
combined into one PR, can lead to review fatigue. E.g., "analyze dataset" might seem
like a single task, but it's probably not!
● The data might need cleaning first

● Some custom functions may need to be written

● There may be several stages to the analysis itself

● Perhaps those custom functions need tests and/or documentation (hint: they do)

● The analysis may need documentation (hint: it does)

Recall, a good pull request should be…
● Focused on a single task

● Manageable for review without overly tiring your reviewer

Stacking can help move the project forward, faster

Rather than waiting to file PR #2 until PR #1 is merged, you can get PR #2 going
now!

But, you need to communicate with your reviewers!

Stacking can help team members work together on
the same code while avoiding merge conflicts

What to expect when you're expecting some stacking

Don't forget to delete your branch after it's merged, so the next branch in the stack
heads to the right base

What to expect when you're expecting stacking

Some GitHub systems you have in place may not work as expected when you merge
into a non-default branch

Writing Closes #<issue-number> in the PR

comment will not automatically close the PR (ask

me how I know 😭)

Your GitHub actions may not get run, depending

on how you set them up
● They will hopefully get run eventually once you hit the

branch that is being merged into main, but not necessarily

at every step along the way

Stacking branches when working in a fork

Recall the forking workflow

upstream/main

origin/main

feature-branch

PR to upstream/main

Updating
origin/main

Image adapted from https://www.atlassian.com/git/tutorials/using-branches

https://www.atlassian.com/git/tutorials/using-branches

Stacking and forking require a little extra thought

Upstream repo

Forked repo

● The initial PR still goes into the upstream repository

● Merge order matters here a lot more! We recommend merging at the "top" of the stack (aka

the youngest branch) first

If you stack in your fork, then the stacked PR for the stacked branch has to also be

filed in your fork

Stacking PRs in forks may or may not meet your needs

This will also cause the overall project history to be spread across multiple
repositories. You'll have to decide if this is a reasonable choice for a given project.

● In the live demo, we'll see an approach using git cherry-pick that can approximate stacking in

forks, without actually stacking but still helping your reviewer avoid fatigue

Upstream repo

Forked repo

To the demo!

