
Pull request reviewer 
responsibilities



Reviewers must stand 
behind the work they 
approve

If you have a code review policy, that means review is part of your job!



The goal is to provide 
constructive feedback 
so the whole team gets 
better



Code review should not be superficial

Reviews should not be overly focused on style or formatting. Ideally, you’ve set up 
systems (🤖 👋) to help with the surface-level stuff.

Reviews should focus on the big picture.

It’s easier to live up to this responsibility when pull requests are small enough bites.

From How About Code Reviews? And Pull Requests—The Good, the Bad and Really, Not That Ugly 

https://slack.engineering/how-about-code-reviews/
https://productive.io/engineering/pull-requests-the-good-the-bad-and-really-not-that-ugly/


Code review requires understanding

Read the pre-existing code if you need to.

Ask clarifying questions.

Tag in someone with more experience or expertise if you’re not the right reviewer!

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/


Share your knowledge

Maybe you’re very familiar with the foibles of the particular package being used. 
Now’s your chance to pass this knowledge on to your coworkers!

Did you consult supplementary material from a paper during your review? Go ahead 
and link that in your comments! (Same goes for StackOverflow, blog posts, etc.)

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/


Distinguish between must-haves and nice-to-haves

Or preferences, or matters of opinion, etc.

Make it easy for the author to identify what it will take to get this pull request 
merged.

You can lean on the different options for returning a review to help:

● Approval means that the code can be merged. 

● Changes requested means that the reviewer that requested the changes must re-review and approve. 

● Commenting means the code can be merged if someone else with the appropriate permissions approves.

From Pull Requests—The Good, the Bad and Really, Not That Ugly 

https://productive.io/engineering/pull-requests-the-good-the-bad-and-really-not-that-ugly/


Explain how you reviewed

Did you attempt to run the code locally and get an error?

Did you read the code and think through edge cases?

All of this is helpful context for the author!



Pick up the phone if you need to!

If you fundamentally disagree with someone’s approach, (internally) public written 
communication might be a tricky way to have a productive conversation about it.

You might want to opt for a synchronous discussion instead and record the 
outcomes on the pull request.

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/


Summary

● If you have a code review policy, review is an important part of your role!

● The point of review is constructive feedback, which dictates that review

○ Shouldn’t be overly focused on superficial things like style

○ Requires understanding of the existing code base or problem at hand

○ Facilitates knowledge sharing

● Practically speaking, it’s helpful if a reviewer

○ Communicates the distinction between what it will take for them to approve and nice-to-haves

○ Explains what steps they took as part of their review


