Single-cell RNA-seq Data in R: Import, QC, Normalize, & Visualize

The Data Lab

Before we begin, an RStudio primer/review

		🗎 rstudio.ccdatalab		o.org C 🔘			
R	File Edit Code View Plots Session Build	Plots Session Build Debug Profile Tools He			trainee f	🎦 🕞 Sessi	ions - 🖅 🔘
		Ins • Project: (None) • R 3.6.1 •					
01-intro_to_base_R-live.Rmd* ×			Environment	History C	Connections		
	л 🔚 🖓 🔍 🖪 Preview 👻 💮 🕶 🚾 Insert 🗸 🖉	순 문 ➡•	合 🔒 🖃 I	mport Datase	t 🕶 🕑		≣ List • 🛛 🚭 •
113	```{r} × <- 5.5		🜗 Global Envir	ronment +		Q	
114 -			Values				
115			x 55				
116							
118	X						
110		a e x					
	[1] 5.5						
119			Ciles Plats	Daskages	Halm View		
120	We can modify an existing variable by reassigning it to its		Files Plots	Packages	neip view	er	
	same name.		New Folder	Upload	U Delete	🔿 Rename	🏫 More 👻 🕓
121	Here we'll add 2° to x° and reassign the result back to		Home > training-modules > intro-to-R-tidyverse				
122	x .		A Na	me		Size	Modified
1:1	Introduction to R and RStudio \$	R Markdown 💲	L				
Console	Terminal × Jobs ×		□ MD 00a-r	studio_guide	.md	3.4 KB	Apr 29, 2020
~/ 🖘			□ MD 00b-0	debugging_re	sources.md	13.6 KB	Apr 29, 2020
>			Mo 00c-good-scientific-coding-pr 3.9 KB Apr 29, 2020				
> x <- 5.5			01-intro_to_base_R-live.Rmd 16 KB Apr 29, 2020				
>			🗆 🔍 02-in	tro_to_ggplo	t2-live.Rmd	9.9 KB	Apr 29, 2020
[1] 5.5			🗆 🔍 03-in	tro_to_tidyve	rse-live.Rmd	16.4 KB	Apr 29, 2020
>			🗌 🔮 04a-i	ntro_to_R_ex	ercise.Rmd	4.1 KB	Apr 29, 2020

New R features that you will see: new pipe | >

- In past workshops, and/or if you have worked with tidyverse packages, you have probably seen the magrittr pipe: %>%
 - This allows "chaining" of functions in a readable way:
 - Instead of writing:

```
second_function(first_function(data)),
we can write things like:
```

```
data %>% first_function() %>% second_function()
```

- In R version 4.1 and later, there is now a built-in version of this operator, |>, so we no longer have to load the magrittr package
 - o data |> first_function() |> second_function()
 - There are some subtle differences between the two, but not much that comes up in normal use

New R features that you will see: function shortcut \(x)

- R 4.1 also added a shortcut for making custom (little) functions
- A "regular" function is defined with the function() function:

```
my_func <- function(x){
    (x + 1)^2
}</pre>
```

- Sometimes, we don't want to save our function, just use it quickly in another function (like apply () or a purrr package function)
 - In purrr functions, we could use a shortcut:

~(.x + 1)^2

• Now we can use a slightly more verbose but more flexible shortcut anywhere:

 $(x) (x + 1)^2$ or $(n) {(n + 1)^2}$

The SingleCellExperiment class

- During this workshop, we will be working mostly with the Bioconductor suite of R packages
- Its main data class for storing single-cell data is the SingleCellExperiment (SCE)

http://bioconductor.org/books/3.16/OSCA.intro/the-singlecellexperiment-class.html

Importing Data

- Single-cell data, after preprocessing/quantification* (or whenever you get it), may be in a variety of formats:
 - "Sparse" matrix files (mtx)
 - HDF5 files (from CellRanger, often)
 - LOOM (a special kind of HDF5)
 - AnnData (another special kind of HDF5 used by many Python tools)
 - SCE objects (in .rds files)
 - Seurat objects (in .rds files)
 - Excel tables
- Each type may require a different function for importing to an SCE object...
 - o DropletUtils::read10xCounts()
 - o seurat::as.SingleCellExperiment()
 - o zellkonverter::readH5AD()

* we are not covering preprocessing here, but ask us about it!

Initial Quality Control

- After preprocessing, you may have a raw and/or filtered matrix of count data
 - Gene × Droplet (cell) matrix with separate counts for each gene in each droplet
- Primary filtering is to remove "empty" droplets that did not contain a cell
 - Methods have changed over time, so different versions of Cell Ranger may have different contents of the filtered matrix
 - If you start with the raw matrix and filter yourself, you will know what was done!
 - and maybe can compare across versions, but other caveats for Cell Ranger version changes exist too!
 - the raw matrix is not usually too much larger, because the filtered droplets have mostly zero counts

Filtering damaged/disrupted/dying cells

- During library preparation, cells may be broken prematurely
 - mRNA in the cytoplasm leaks out, giving unreliable (and usually lower) counts
 - mRNA in the mitochondria has an extra layer of protection (or 2) and will not leak out as readily
 - We can use the percentage of mitochondrial mRNA as an extra QC measure
 - But what cutoff should we use?
- miQC (Hippen *et al.* 2021) is a method that combines the total counts and the percentage of mitochondrial genes to identify likely-disrupted cells
- https://doi.org/10.1371/journal.pcbi.1009290)

Normalization

- The number of reads per cell often varies
 - This technical variation may mask biological variation
 - Normalization corrects per-cell counts for read depth

Dimensionality Reduction

- Transcriptome data is highly multidimensional
 - Each gene's expression measurement is a separate dimension
 - Expression is often correlated among genes
- We'd like to find a representation of the expression data with fewer dimensions
 - Remove redundant information
 - Speed downstream calculations
 - Reduce "noise"
 - Allow us to make visualizations that capture the important variation in the data

Dimensionality Reduction Methods

- Principal Components Analysis
 - linear transformation of input data
 - usually to tens or hundreds of dimensions
 - removes much of the noise; retains most of the signal
 - useful as input to many downstream analyses (clustering, etc.)
- UMAP and/or tSNE
 - reduce down to 2 or 3 dimensions
 - transformation is highly non-linear
 - much slower than PCA
 - nice for visualization, but be careful!
 - distances between points may be misleading
 - similar challenge to squashing a globe onto a flat map... but more extreme!

Clustering Cells

Dimensionality reduction often results in visible "clusters", but how do we define those?

Many methods!

- hierarchical clustering
 - join closest points/groups recursively
- k-means clustering
 - pick a number k, then find the "best" way to divide cells into that many groups
 - assumes clusters are "spherical"
- graph-based clustering
 - Connect cells to other cells with similar expression, then divide up the graph into clusters

Graph-based Clustering

Step 1: Calculate similarity matrix among points

Step 2: Build a weighted network graph connecting points to their neighbors

Step 3: Divide network graph into "neighborhoods" based on connection patterns

Many options at each step! The algorithms can determine how many clusters to assign.

Image from: https://github.com/benedekrozemberczki/awesome-community-detection

What do the clusters represent?

- Groups of cells with distinct gene expression patterns
- What does that mean?
 - maybe cell types?
 - sometimes cell states?
 - perhaps perturbations?
- Interpretation will vary based on the sample you are using!
 - do not expect a simple mapping of clusters to cell types
- Clustering is usually somewhat stochastic
 - parameter choice and random seeds will affect clusters
 - use caution when interpreting clustering results!