Integrating Different Samples in Single-cell RNA-seq

The Data Lab

Why integrate ("batch correct") datasets?

- Analyze multiple libraries at once rather than analyze each library individually
- Integration allows us to:
 - Perform clustering on a single integrated dataset
 - Visualize integrated libraries in one space
 - Perform downstream analyses that would benefit from a larger sample size:
 - Identify marker genes
 - Cell type annotation
- Provides an integrated profile of multiple libraries, which is often represented as a reduced dimension matrix of some kind (e.g., PCA or "latent embedding")
- Note that we can expect *tradeoffs* between reducing technical variation and retaining biological variation

What does "good integration" look like?

- Helps mitigate () the batch effects caused by variation across libraries, while hopefully () still preserving biological information
 - Technical variation can arise from *all that comes with* separate library preps and sequencing

Adapted from Lueken et al., 2022

Example of (what looks like*) successful integration

*Measuring success is actually kind of tricky! Stay tuned...

Let's have a closer look at methods we'll be using

- MNN: Mutual nearest neighbors
 - Specifically, we'll use FastMNN 🚀
 - Haghverdi, L, Lun, A, Morgan, M, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. (2018) <u>https://doi.org/10.1038/nbt.4091</u>

• Harmony

• Korsunsky, I, Millard, N, Fan, J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. (2019) <u>https://doi.org/10.1038/s41592-019-0619-0</u>

Mutual nearest neighbors batch correction

- Imagine we have 2 batches, each with 3 cell types
 - Red and blue are shared but yellow and pink are not!
 - Before beginning integration, cosine distances are first calculated among pairs of cells *within each sample*
 - This enables expression profile comparisons and sets up the data for integration
- First, we identify pairs of cells with mutually similar expression profiles
 - These are our "mutual nearest neighbors"

Mutual nearest neighbors batch correction

• Next, compute a batch correction vector for each MNN pair

- Finally, calculate the weighted average of these vectors to get cell-specific batch corrections to perform the final integration
 - Note that w and z don't "look" as "integrated"! Why?

Some assumptions that MNN makes

- At least one cell population is present in both batches
- The batch effect is almost orthogonal to the biological effects
 - Roughly means, batches and biology are expected to have separate variation

• The batch-effect variation is much smaller than the biological-effect variation across cell types

Harmony batch correction

• "Soft k-means clustering algorithm"

Evaluating integration: What counts as "good"?

• Before and after UMAP vibes

- We expect that batches cluster less after integration due to removed technical variation
- \circ $\hfill But "biology" across batches should still cluster together$
 - Biology = cell types (which may not be known!), tissue type, donor, etc.

Your mileage may vary across methods!

Luecken, M.D., Büttner, M., Chaichoompu, K. et al. *Benchmarking atlas-level data integration in single-cell genomics*. (2022). <u>https://doi.org/10.1038/s41592-021-01336-8</u>

We performed some benchmarking on simulated data from Luecken *et al*.

- We evaluated several methods, four of which we'll show here:
 - FastMNN
 - Harmony
 - Seurat using CCA (canonical correlation analysis)
 - Seurat using RPCA (reciprocal PCA)
 - (We'll note that we also looked at scVI, which seemed to work well but is slow on CPU and it's in Python which is beyond the scope of our workshop!)

• We chose these methods based on performance in Luecken *et al.* and their usability

Scenario 1: All cell types are present in all batches

UMAPs colored by Batch

Scenario 1: All cell types are present in all batches

UMAPs colored by Cell Type

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

UMAPs colored by Batch

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

UMAPs colored by Cell Type

Evaluating integration: What counts as "good"?

• Before and after UMAP vibes

- We expect that batches cluster less after integration due to removed technical variation
- \circ But "biology" across batches should still cluster together
 - Biology = cell types (which may not be known!), tissue type, donor, etc.

- There are several metrics for evaluating batch correction
 - Luecken et al. (2022) is an excellent reference https://doi.org/10.1038/s41592-019-0619-0
 - Caution: Metrics generally do not measure "was integration successful," but other proxies which *sometimes can help us tell* if integration was successful (or at least not unsuccessful)

Performing integration: Bookkeeping

- As input, many methods (in R!) require you to merge all SCEs into one *unintegrated SCE object*, which can then be integrated
 - Key point: Combining is NOT integrating

• This means SCEs need to be able to be merged, which may require us to manipulate SCE objects first for compatibility!

Merging SCE assays

Per-gene (feature) data: Each row is a gene

Per-cell data: Each row is a cell

