
Dimensionality Reduction and
Clustering of Single-cell Data

The Data Lab

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type
Dimension reduction

PCA

runPCA()

UMAP

runUMAP()

● Transcriptome data is highly multidimensional
○ Each gene’s expression measurement is a separate dimension

○ Expression is often correlated among genes

● Goal: a more compact representation of the expression data

with fewer dimensions
○ Reduce uninformative and redundant information

○ Increase “signal-to-noise” ratio

○ Speed up downstream calculations

○ Allow us to make visualizations that capture the important

variation in the data

Identify variable genes

modelGeneVar()

Dimensionality Reduction Methods

● Feature selection
○ Select the most (biologically) variable genes

● Principal Components Analysis
○ linear transformation of input data

○ usually to tens of dimensions

○ removes much of the noise; retains most of the signal

○ useful as input to many downstream analyses (clustering, etc.)

● UMAP and/or tSNE
○ reduce down to 2 or 3 dimensions

○ transformation is highly non-linear

○ much slower than PCA

Principal Components Analysis (PCA)

http://www.nlpca.org/pca_principal_component_analysis.html

http://www.nlpca.org/pca_principal_component_analysis.html

https://builtin.com/data-science/step-step-explanation-principal-component-analysis

https://builtin.com/data-science/step-step-explanation-principal-component-analysis

Assumptions/Limitations of PCA

● PCA is a linear transformation of the input data
○ Fast!

○ Reversible if we keep all dimensions

○ Usually we don’t keep everything… removing higher dimensions reduces effects of noise

● Assumes ~ normal distributions for error
○ For scRNA-seq count data, this can be approximated with log-scale normalization

● Sensitive to outliers

● GLM-PCA may solve many of these limitations, but is not in wide use:
(Townes et al. 2019 https://doi.org/10.1186/s13059-019-1861-6)

https://doi.org/10.1186/s13059-019-1861-6

UMAP and tSNE

Machine learning methods for
dimensionality reduction

Details are beyond the scope of this course,
but the basic steps are these:

● Calculate the similarity between pairs of data points

● Find a representation in low dimensionality space (mapping) that recapitulates
the similarity matrix
○ How? Start with a mapping then progressively update it by how well the distances in the low

dimension space match the original distances

A nice visualization/playground for tSNE: https://distill.pub/2016/misread-tsne/

https://doi.org/10.1038/nbt.4314

https://distill.pub/2016/misread-tsne/
https://doi.org/10.1038/nbt.4314

Assumptions/Limitations of UMAP & tSNE

● No assumptions about shape of data
○ Performs better when structures may not have “normal” distributions

● Tends to produce more visually distinct clustering
○ Nice for visualization, but be careful!

■ Distances between points may be misleading

■ Similar challenge to squashing a globe onto a flat map… but more extreme!

● Non-reversible (can’t infer original data from mapping)
○ Don’t use the resulting coordinates for analysis!

● Can be slow
○ Common to use PCA first for partial dimension reduction, then UMAP/tSNE on that

○ UMAP is (usually) faster

To the notebooks, Batman!

Preprocess
& Import

QC, Filter,
&

Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type

Clustering Cells

Dimensionality reduction often results in visible “clusters”, but how do we define
those? Many methods!

● hierarchical clustering
○ Join closest points/groups recursively

● k-means clustering
○ Pick a number k, then find the “best” way to divide cells into that many groups
○ Assumes clusters are “spherical”

● graph-based clustering
○ Connect cells to other cells with similar expression, then divide up the graph into clusters

k-means clustering

Step 1: Pick k random centers

Step 2: Assign points to clusters by
which center is closest

Step 3: Find new centers as the
mean locations of all points in a
cluster

Repeat Steps 2 and 3 until the
clusters are stable

k-means clustering

Step 1: Pick k random centers

Step 2: Assign points to clusters by
which center is closest

Step 3: Find new centers as the
mean locations of all points in a
cluster

Repeat Steps 2 and 3 until the
clusters are stable

k-means clustering

Step 1: Pick k random centers

Step 2: Assign points to clusters by
which center is closest

Step 3: Find new centers as the
mean locations of all points in a
cluster

Repeat Steps 2 and 3 until the
clusters are stable

k-means clustering

Step 1: Pick k random centers

Step 2: Assign points to clusters by
which center is closest

Step 3: Find new centers as the
mean locations of all points in a
cluster

Repeat Steps 2 and 3 until the
clusters are stable

k-means clustering

Step 1: Pick k random centers

Step 2: Assign points to clusters by
which center is closest

Step 3: Find new centers as the
mean locations of all points in a
cluster

Repeat Steps 2 and 3 until the
clusters are stable

Graph-based Clustering

Step 1: Calculate similarity matrix among points

Step 2: Build a weighted network graph
connecting points to their neighbors

Step 3: Divide network graph into
“neighborhoods” based on connection patterns

Many options at each step! The algorithms can
determine how many clusters to assign.

Image from:
https://github.com/benedekrozemberczki/awesome-community-detection

https://github.com/benedekrozemberczki/awesome-community-detection

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type
Cluster

k-means clustering

KmeansParam()

Graph clustering

NNGraphParam()

Apply clustering

clusterRows()
● The bluster package provides a uniform interface for a variety of

clustering algorithms

○ We will explore two of these in the notebooks

● Choosing a clustering algorithm is not the end: each general
algorithm has parameters that we can adjust

○ k-means: How many clusters?

○ Graph-based: Network weighting and splitting method

What do the clusters represent?

● Groups of cells with distinct gene expression patterns
● What does that mean?

○ maybe cell types?

○ sometimes cell states?

○ perhaps perturbations?

● Interpretation will vary based on the sample you are using!
○ do not expect a simple mapping of clusters to cell types

● Clustering is usually somewhat stochastic
○ parameter choice and random seeds will affect clusters

○ use caution when interpreting clustering results!

Identifying marker genes

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type
Find Markers

● We can perform differential expression analysis among clusters to identify
potential marker genes

● However! There’s a good chance we may have committed some light circularity

○ We used gene expression to define the clusters, so finding gene
expression differences between clusters is expected!

○ Don’t rely too much on the specific statistics we calculate
(for more, see the OSCA section on p values)

Identify genes with
cluster-associated
expression

findMarkers()

http://bioconductor.org/books/3.16/OSCA.advanced/marker-detection-redux.html#p-value-invalidity

