In this section, we’ll be working with RNA-seq data from
neuroblastoma (NB) cell lines from Harenza, et al.
(2017)
The course directors have already processed the raw data using
salmon quant
and the quant.sf
files for each
sample can be found in
data/NB-cell/salmon_quant/<SAMPLE>
.
In the gastric cancer example, we imported Salmon-processed data with
tximeta
to then use with DESeq2
. We will also
use DESeq2
for these analyses, specifically for
differential expression analysis.
In order to prepare the NB cell line data for differential expression
analysis, we will modify the gastric cancer tximeta notebook
(02-gastric_cancer_tximeta-live.Rmd
) and save this new
notebook as nb_cell_tximeta.Rmd
:
To create a new notebook, select File
>
New File
> R Notebook
. The new notebook
should appear in your Source Pane in RStudio. Save the new notebook,
using Ctrl+S (Cmd+S on Mac) or File
> Save
,
in the training-modules/RNA-seq
directory with the name
nb_cell_line_tximeta.Rmd
. You can add a new chunk by
clicking the Insert Chunk button on the toolbar or by pressing
Cmd+Option+I.
Alter the code from
02-gastric_cancer_tximeta-live.Rmd
to use the NB cell line
data. The quant.sf
files for each sample can be found in
data/NB-cell/salmon_quant/<SAMPLE>
.
Save the tximeta
output as
data/NB-cell/txi/NB-cell_tximeta.rds
. Note that
data/NB-cell/txi/
is a new directory.
LS0tCnRpdGxlOiAiUHJvY2Vzc2luZyBhIE5ldXJvYmxhc3RvbWEgY2VsbCBsaW5lIGRhdGEgc2V0IgphdXRob3I6IENDREwgZm9yIEFMU0YKZGF0ZTogMjAyMQpvdXRwdXQ6ICAgCiAgaHRtbF9ub3RlYm9vazogCiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQotLS0KCkluIHRoaXMgc2VjdGlvbiwgd2UnbGwgYmUgd29ya2luZyB3aXRoIFJOQS1zZXEgZGF0YSBmcm9tIG5ldXJvYmxhc3RvbWEgKE5CKSBjZWxsIGxpbmVzIGZyb20KW0hhcmVuemEsIF9ldCBhbC5fICgyMDE3KV0oaHR0cHM6Ly9kb2kub3JnLzEwLjEwMzgvc2RhdGEuMjAxNy4zMykKClRoZSBjb3Vyc2UgZGlyZWN0b3JzIGhhdmUgYWxyZWFkeSBwcm9jZXNzZWQgdGhlIHJhdyBkYXRhIHVzaW5nIGBzYWxtb24gcXVhbnRgIGFuZCB0aGUgYHF1YW50LnNmYCBmaWxlcyBmb3IgZWFjaCBzYW1wbGUgY2FuIGJlIGZvdW5kIGluIGBkYXRhL05CLWNlbGwvc2FsbW9uX3F1YW50LzxTQU1QTEU+YC4KCiFbXShkaWFncmFtcy9ybmEtc2VxXzUucG5nKQoKSW4gdGhlIGdhc3RyaWMgY2FuY2VyIGV4YW1wbGUsIHdlIGltcG9ydGVkIFNhbG1vbi1wcm9jZXNzZWQgZGF0YSB3aXRoIGB0eGltZXRhYCB0byB0aGVuIHVzZSB3aXRoIGBERVNlcTJgLgpXZSB3aWxsIGFsc28gdXNlIGBERVNlcTJgIGZvciB0aGVzZSBhbmFseXNlcywgc3BlY2lmaWNhbGx5IGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcy4KCkluIG9yZGVyIHRvIHByZXBhcmUgdGhlIE5CIGNlbGwgbGluZSBkYXRhIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcywgd2Ugd2lsbCBtb2RpZnkgdGhlIGdhc3RyaWMgY2FuY2VyIHR4aW1ldGEgbm90ZWJvb2sgKGAwMi1nYXN0cmljX2NhbmNlcl90eGltZXRhLWxpdmUuUm1kYCkgYW5kIHNhdmUgdGhpcyBuZXcgbm90ZWJvb2sgYXMgYG5iX2NlbGxfdHhpbWV0YS5SbWRgOgoKKiBUbyBjcmVhdGUgYSBuZXcgbm90ZWJvb2ssIHNlbGVjdCBgRmlsZWAgPiBgTmV3IEZpbGVgID4gYFIgTm90ZWJvb2tgLgpUaGUgbmV3IG5vdGVib29rIHNob3VsZCBhcHBlYXIgaW4geW91ciBTb3VyY2UgUGFuZSBpbiBSU3R1ZGlvLgpTYXZlIHRoZSBuZXcgbm90ZWJvb2ssIHVzaW5nIEN0cmwrUyAoQ21kK1Mgb24gTWFjKSBvciBgRmlsZWAgPiBgU2F2ZWAsIGluIHRoZSBgdHJhaW5pbmctbW9kdWxlcy9STkEtc2VxYCBkaXJlY3Rvcnkgd2l0aCB0aGUgbmFtZSBgbmJfY2VsbF9saW5lX3R4aW1ldGEuUm1kYC4KWW91IGNhbiBhZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ21kK09wdGlvbitJKi4KCiogQWx0ZXIgdGhlIGNvZGUgZnJvbSBgMDItZ2FzdHJpY19jYW5jZXJfdHhpbWV0YS1saXZlLlJtZGAgdG8gdXNlIHRoZSBOQiBjZWxsIGxpbmUgZGF0YS4KVGhlIGBxdWFudC5zZmAgZmlsZXMgZm9yIGVhY2ggc2FtcGxlIGNhbiBiZSBmb3VuZCBpbiBgZGF0YS9OQi1jZWxsL3NhbG1vbl9xdWFudC88U0FNUExFPmAuCgoqIFNhdmUgdGhlIGB0eGltZXRhYCBvdXRwdXQgYXMgYGRhdGEvTkItY2VsbC90eGkvTkItY2VsbF90eGltZXRhLnJkc2AuIE5vdGUgdGhhdCBgZGF0YS9OQi1jZWxsL3R4aS9gIGlzIGEgbmV3IGRpcmVjdG9yeS4K