
Working with branches in Git
Childhood Cancer Data Lab

Branches in git

● Branches are like "repositories within repositories" 🤯
● Useful when you want to make changes (maybe experimental!) but you don't

want to break the rest of your code
○ You can always switch back to a "clean" branch!

● Keep related changes together
○ All commits for a given new analysis or "feature" can be made within the same branch for easier

tracking

○ Helps you to identify which commits are relevant to a given analysis

● If you wreck code in a branch, you've only wrecked that branch! Just delete it!
● Branches provide a great framework for collaboration and team science

Source: https://www.atlassian.com/git/tutorials/using-branches

main branch

A feature branch

A feature branch

https://www.atlassian.com/git/tutorials/using-branches

Modified from https://www.atlassian.com/git/tutorials/using-branches/git-merge

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Creating a new branch

Because we are currently on
the main branch, this new
branch will be created off of
the main branch's history.

Alternatively…

Name your new branch by typing it in here

Now you're in your new branch!

Note the different icons associated
with local vs. remote repositories

● Local is a laptop icon
● In this case, remote is

Stephanie's GitHub profile
picture (but you aren't
Stephanie!)

We created new-feature locally,
so it does not (yet!) exist on our
remote.

We can switch between branches with checkout

You can also double-click
on a branch in GitKraken!

Hurray for GitKraken!

Make commits within your new branch as usual

Pushing prompts you to specify the remote branch

Because this new-feature
branch doesn't exist (yet!) on
the remote, Git needs more
info about where to push to.

This prompt will always occur
the first time you push from a
brand new branch.

GitKraken helpfully guesses
what you want your remote
branch to be named! Click
"Submit."

Pushing has created a corresponding remote branch

Have a look at the icons!
new-feature is now
fully "synced" between
local and remote.

Viewing branches on GitHub

Merge into your main branch

But note!! You have to be in the
branch you are merging into (see how
main is highlighted?)

Bonus!! You can also point-and-click
drag branches to merge them.
Here, drag new-feature into main
in the sidebar

Voila, your local histories have merged!

The merge itself is a
commit to the main
branch, with an
automatic commit
message

You can now safely delete your branch

Importantly, deleting branches that
have been merged does not delete
their commits! Those commits are
part of the main branch's history
now.

This action
deletes the
remote
branch

You can now safely delete your branch

Deleting branches that have been
merged does not delete their commits!
Those commits are part of the main
branch's history now.

You can also conveniently delete
both remote and local branches at
once by right-clicking the joint label
in the source graph.

Are you sure?? If you've merged: yes, you're sure.

A quick note about merging branches

● When you are working independently, merging directly into main on your own is
probably fine!

● When you are working collaboratively, it can get dangerous because your
collaborators won't be in the loop, and conflicts will probably emerge
○ We recommend using pull requests (and maybe code review!) to merge code into main in

collaborative projects. Learn more:

■ Pull Requests

■ Preprint about collaborative coding: Parker 2017

■ Slack blog: "On empathy and pull requests"

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://doi.org/10.7287/peerj.preprints.3210v1
https://slack.engineering/on-empathy-pull-requests/

Branches and merging on the command line

Make new branches, and change branches

Step 1: Create new branch called ̀ feature`
git branch feature

Step 2: Go to your new branch
git switch feature # git >=2.23
git checkout feature

OR, do it all in one step!!
git switch -c feature # git >=2.23
git checkout -b feature

Merge `feature` into `main`

Step 1: Be in ̀ main`
git switch main # git >=2.23
git checkout main

Step 2: Merge ̀ feature` into `main`
git merge feature

Merge conflicts can happen!

● If a given file has been heavily modified, git may not be able to merge the
different file versions across branches together automatically
○ This is especially a problem if there are many branches floating around getting merged into each

other

○ Imagine if each of these branches modified the same file in drastically incompatible ways….….

→ You will have to manually fix the merge conflicts!

histologies_metadata.tsv

main update-metadata-fields

Merging update-metadata-fields into main causes a merge conflict

The result of a fixed merged
conflict will appear here

VS Code also has helpful git integration!

A reminder: Everyone agrees Git is tricky.

● You will make mistakes
○ That's ok! So do we, and so does everyone else!
○ Git and GitKraken error messages will try to help you

● But sometimes you will just want to curse

https://dangitgit.com/en

(and its other version, https://ohs**tgit.com, but with those letters filled in!)

Translated into over 20 languages, and counting!

https://dangitgit.com/en

