
The Git Stage/Commit/Push
workflow

Childhood Cancer Data Lab

The "stage/commit/push" flow

1. Make code changes

2. Stage the changes you want to be part of the next commit
a. Best practice to stage one changed file at a time to avoid problems
b. Note: you may also hear this step referred to as "add"

3. Commit your code changes with an informative message

4. Push your local commit(s) to the remote repository you cloned on

GitHub.com

How much should you stage for a commit?

● Smaller units of work are generally better for you!

● Imagine you are looking in your code history. Which commit message is more
helpful?
○ All the work I did on Tuesday
○ Modified notebook to change plot size

● Which scenario is easier to look through?
○ 1-3 changed files in a commit

○ 25 changed files in a commit

https://xkcd.com/1296/

Click on a changed file
to see its diff view

We stage
files to "add"
them to the
staging area.

Now we are ready
to commit these
staged changes.

We'll see how to do this from the command line soon!

Not all files are meant to live under version control

● Sometimes we have files inside the repository directory that we very much do
not want to be part of version control
○ Large files; GitHub cannot generally handle files >= 100 MB

○ Unreleased/private data files, including PII/PHI data - even in a private repository, don't do it!
○ Other sneaky culprits like .DS_Store files on MacOS

● It's pretty easy to mess up and accidentally stage/commit these files, and Git
loves to complain about unstaged files

Using .gitignore files

● .gitignore files are hidden files that tell git to ignore certain files
○ .gitignore will make Git stop telling you about untracked changes

○ .gitignore will prevent you from staging/committing these files by accident

■ 🚨Word to the wise:🚨 Include files ASAP in your .gitignore before you accidentally
commit them! (Trust us, we speak from experience….)

● You can have many .gitignore files in a repo (in different directories) and/or a
single .gitignore at the top of your repo that all subdirectories "inherit"
○ You can also have a global file in ~/.gitignore that will apply to all repos on your computer

(Requires a little more setup, though)!

○ But caution: Your collaborators probably don't have that file.

github.com has some useful templates

Now, we'll make a .gitignore file
to also ignore data/raw/fastq

