Managing Packages and

Environments
Childhood Cancer Data Lab



Software is called “soft” for a reason

e Software is always changing!
o New versions can bring new features and fix bugs €%
o Butalsoremove features you relied on &
o  Oralter behavior in unexpected ways @

e Changes inone piece of software can break other software
o Sometimes this is intentional! Operating systems are constantly updating to break hacking tools



Changes occur at every level of the computing “stack”

Individual scripts/analyses

Packages within R, Python, etc.

Individual programs (Cell Ranger, Salmon, etc., but also R & Python)
Operating system

Hardware

We want to do our best to track and document versions of as many layers as
possible.

Ideally, we would like to freeze versions, so we and anyone else can come back and
know results will be the same!



The “analysis” layer

e We have already talked about tracking your changes with Git and GitHub

o If you know which commit of your scripts you used to produce an analysis, you can point people
right to that

o “tags” and “releases” on GitHub can make this easier when you have a particular commit you
want to share (but we won't be covering that in this workshop)



The package layer

e Research software tools in bioinformatics (and beyond) are often published as
packages for R or Python

o Examples: Seurat, scanpy, tidyverse, pandas, Bioconductor packages

e This makes them generally easy to install and update as research progresses
o BUT easy to update means things can change fast

o New versions may change results, even for existing functions!
m Newer isn't always better; sometime you want to stick with the old way

o Dependencies on other packages may require specific versions of other packages



Documenting package versions in R

e sessionInfo() isyour friend
o orsessioninfo::session_info()
R version 4.1.2 (2021-11-01)

Platform: x86_64-apple-darwinl7.0 (64-bit)
Running under: macOS Monterey 12.4 — Session info

setting value

Matrix products: default version R version 4.1.2 (2021-11-01)

" ’ . 0s mac0S Monterey 12.4
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Reso system  x86_64, darwini7.e
ui RStudio
locale: language (EN)

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_ collate en_US.UTF-8

ctype en_US.UTF-8

tz America/New_York

date 2022-05-31

rstudio 2022.02.2+485 Prairie Trillium (desktop)

pandoc  2.17.1.1 @ /Applications/RStudio.app/Contents/Mac0S/quarto/bin/ (via rmarkdown)

attached base packages:
[1] stats graphics grDevices utils datasets met

other attached packages:

[1] magrittr_2.0.3 ggplot2_3.3.6 dplyr_1.0.9 — Packages

package * version date (UTC) lib source
loaded via a namespace (and not attached): zit64 i'g': ;gggﬁgﬁgg {ﬂ Eizxtg ji'g;
[1] bslit.)_0.3.1 jquerylib_0.1.4 R(ljolorBrewer_l bslib 0.3.1 2021-10-06 [1] CRAN (R 4.1.0)
[5] compiler_4.1.2 tools_4.1.2 digest_0.6.29 .yj 3.3.0  2022-04-25 [1] CRAN (R 4.1.2)
[9] jsonlite_1.8.0 evaluate_0.15 lifecycle_1.0. colorspace 2.0-3  2022-02-21 [1] CRAN (R 4.1.2)
[13] gtable_0.3.0 pkgconfig_2.0.3 rlang_1.0.2 crayon 1.5.1 2022-03-26 [1] CRAN (R 4.1.2)
[17] rstudioapi_0.13  yaml_2.3.5 parallel_4.1.2 digest 9.6.29 2021-12-01 [1] CRAN (R 4.1.0)
7 dplyr * 1.0.9  2022-04-28 [1] CRAN (R 4.1.2)
ellipsis 0.3.2  2021-04-29 [1] CRAN (R 4.1.0)
evaluate 0.15 2022-02-18 [1] CRAN (R 4.1.2)

-



But how do you recreate the same set of packages?

Installing packages based on sessionInfo() output could be very tedious!

Enter renv!

e renv isanR package for tracking, freezing, and sharing R environments, including
all of the package versions that were installed.

e FEachproject can have its own environment, with its own set of packages

o Different projects may require different versions of packages
o renv can help manage these different sets of package versions

e When sharing a project/analysis, using renv allows everyone stay in sync with
same packages and versions


https://rstudio.github.io/renv/index.html

How does renv work?

Rather than using the system R package library, renv creates a library for each
project that R will use when running code for the project ("Project Library")

This renv-created library could be large, so we can’'t reasonably share the whole
thing.

Instead, we create a file (renv . 1lock) that describes the library.

renv uses this file to track all of the packages we are using, and recreate the library
with those packages as needed.



Console Terminal Jobs =

‘R R4.1.2 - ~/Projects/rrp-workshop-exercises/ =

renv initialization > renv::init ()]

In the console, enter:

- stringi [* —> 1.7.6]

o o o ia.e - stringr [* —> 1.4.0]
renv.. 1n1t( ) - tibble [* = 3.1.7]
- tidyselect [*x —> 1.1.2]

. - tinytex [* —> 0.38]

Lots of text will scroll by, and your - tzdb [ > 0.3.0
- utf8 ¥ —> 1.2.2

R session will restart. _ vetrs [* -> 0.4.1]
- viridisLite [* —> 0.4.0]

- vroom [* => 1.5.7]

That’s it! You are starting to track Becind iadepes
your R packages! - yaml D = 2x345]

* Lockfile written to '~/Projects/rrp-workshop-exercises/
renv. lock'.

Restarting R session...
* Project '~/Projects/rrp-workshop-exercises' loaded. [re

nv 0.15.4]

> |




Whatdid renv: :init() do?

Added an renv . ].OCk ﬁle’ renv/ folder Fi[es Plots Packages Help Viewer Presentation =:|
. ©7] Folder ' © Blank File ~ € Delete =] Rename {a' od €]
and . Rp I"Oflle ﬁle () 2Y Home > Projects > rrp-workshop-exercises @ | ..
. A Name Size Modified
(or modified the one you had) L
[ #®] .gitignore 39B May 20, 2022, 4:55 PM
The . Rp rofile ﬁ|e iS run When R [} ©] .Rhistory 10.4 KB Jun 2, 2022, 11:08 AM
. . . . (] #] Rprofile 26 B Jun 2, 2022, 11:10 AM
launches for this project, and it contains a T e
command to configure renv on launch. ::: d;‘“a
- plots
. . (] wo| README.md 348 B May 16, 2022, 10:15 AM
The renv/ folder is where the Project 0 69 renv
H (] 7 renv.lock 16.7 KB Jun 2, 2022, 11:10 AM
Library and support files can be found o I
0O =® rrp-workshop-exercises.Rproj 243 B Jun 2, 2022, 11:10 AM
Newly installed packages for the project () £ scripts

will be stored in this Project Library



©] .Rprofile ] renv.lock —id]

The renv. lock file

"Repositories": [
{
"Name": "CRAN",
"URL": "https://cran.rstudio.com"
¥
]

0O NOUAE WN R

Taking a snapshot creates or updates the

e}

1 10 +
renv.lock file at the base of your project. Bl ackoges: |
9
12 "R6": {
13 ""Package": "R6",
. 14 "Version": "2.5.1",
Thls ﬁ |e records 15 "Source": "Repository",
o0 16 "Repository": "CRAN",
. . it/ "Hash": "470851b6d5d0@ac559e9d01bb352b4021",
e Which packages are installed 18 Requirenents': ()
19 +
M 20 "bit": {
. The paCkage VerSIOns 21 "Package": "bit",
22 "Version": "4.0.4",
e Where the packages came from P
25 "Hash": "f36715f14d94678eea%9933af927bc15d",
26 "Requirements": []
° ° 27 +
Do not edit this file manually! 2 bitea:
29 "Package": "bit64",
30 "Version": "4.0.5",
31 "Source": "Repository",
32 "Repository": "CRAN",
83 ""Hash": "9fe98599ca456d6552421db0d6772d8f",
34 "Requirements": [
B85 it
36 1
3 1,
g Text file ¢




Updating the renv . lock file

: ) ; - N rrp-worksho;:-exen’:‘i‘ses - jashapiro/plotti - i An “« re nV” me n u n OW

= A Go to file/function 5~ i~ Addins - R/ rrp-workshop-exercises ~
Console  Terminal Jobs = Environment  History Connections  Git  Tutorial P | M h P k
R R4.1.2 - ~/Projects/rrp-workshop-exercises/ 2 [ "7 Import Dataset ~ " 138 MiB ~ 1’ List ~ S a p pea rS I n t e a C ages
_ .rappdirs [* 5 0'3_3i R ~ 7} Global Environment ~
- readr [* -> 2.1.2]
- renv [* —> 0.15.4] pane
- rlang [* = 1.0.2] Environment is empty
- rmarkdown [* —> 2.14]
- rprojroot [* —> 2.0.3]
- saal A Use “S hot Lib !
- scales [* —> 1.2.0] Se naps O I ra ry..-
- stringi [* —> 1.7.6]
- stringr [*x -> 1.4.0]
- tibble [* = 3.1.7] Files Plots Packages Help Viewer Presentation =] to u pd ate the r e n V ° O C
- tidyselect [* —> 1.1.2] Ol install | @ Update g renv - ;
- tinytex [* —> 0.38] Name Descr| T — Lockfile  Source ﬁ I t t h t t
- tzdb * - 0.3.0] Project Library e O e Cu rren Se u p,
- utfs [* —> 1.2.2] basesdenc  Tool Snapshot Library... 0.1-3 —
- V(':t'l's' i [* > 0.4.1] enco‘ Restore Library... ’
- viridisLite [* > 0.4.0] bit Classes and Methods for ~ 4.0.4 Repos e.g. afte r yo u u pd ate O r
- vroom [* -> 1.5.7] Fast Memory-Efficient
- withr [* —> 2.5.0] Boolean Selections .
- xfun [* —> 0.30] bit64 A S3 Class for Vectors of ~ 4.0.5 4.0.5 t | | k
- yaml [* => 2.3.5] 64bit Integers InS a neW pac ages
bslib Custom 'Bootstrap’ 'Sass'  0.3.1 0.3.1
. . , . . Themes for 'shiny' and
* Lockfile written to '~/Projects/rrp-workshop-exercises/r ‘rmarkdown’
env. lock'. cli Helpers for Developing 3.3.0 3.3.0 Repos

C d Line Interf: M M
Alternatively, in the

System Clipboard
colorspace A Toolbox for 2.0-3 2.0-3 Repos

* Project '~/Projects/rrp-workshop-exercises' loaded. [ren Manipulating and CO nso | e e nte r,
v 0.15.4] Assessing Colors and .
> Palettes

a1l A 111 Intavfara fAr D'e nan nan Dannc

renv: :snapshot()
e



Restoring a library froman renv. lock file

When working on a new machine, or if someone else updated the renv . lock file,
you may need to update the Project Library

* Project '~/Projects/rrp-workshop-exercises' loaded. [renv 0.15.4]
* The project library is out of sync with the lockfile.
* Use "renv::restore()  to install packages recorded in the lockfile.

Follow the instructions! Enter renv: s restore () in the console (or use the renv

menu "Restore Library" option) to sync your Package Library with the recorded
versions, installing any missing packages.



Which packages are included in renv. lock?

You might have many packages installed, but only use some in a given project.

renv tries to be smart about this, and only includes packages that it finds used
within code in the project folder, or packages that are required by the packages
that are used (so-called dependencies)

Sometimes renv misses a package (particularly for packages with optional dependencies),
and you might need to create a file (we usually call ours dependencies.R) that only
contains lines like:

library(missing_package)

which will force renv to include that package in the lockfile.



Other package management systems

e renvis pretty useful, but it only gets us so far... only R packages (and a bit of

Python, in some situations)
o Forsoftware outside R, other package management systems are required

e conda is one of the more popular and flexible package managers
o Started as a Python package manager, but it can be used for any command line software
o Like renv, you can create separate sets of software with different versions for different projects
o LOTS of bioinformatics software available through bioconda
o https://bioconda.github.io/user/install.html

e Docker and Singularity are another level up
o “Containers” that include everything from the operating system up
o  Runone OSinside another, with all the things frozen to particular versions
o Cloud platforms love containers...


https://bioconda.github.io/user/install.html

