
Managing Packages and
Environments

Childhood Cancer Data Lab

Software is called “soft” for a reason

● Software is always changing!
○ New versions can bring new features and fix bugs 🎉
○ But also remove features you relied on 😟
○ Or alter behavior in unexpected ways 😱

● Changes in one piece of software can break other software
○ Sometimes this is intentional! Operating systems are constantly updating to break hacking tools

Changes occur at every level of the computing “stack”

● Individual scripts/analyses
● Packages within R, Python, etc.
● Individual programs (Cell Ranger, Salmon, etc., but also R & Python)
● Operating system
● Hardware

We want to do our best to track and document versions of as many layers as

possible.

Ideally, we would like to freeze versions, so we and anyone else can come back and
know results will be the same!

The “analysis” layer

● We have already talked about tracking your changes with Git and GitHub

○ If you know which commit of your scripts you used to produce an analysis, you can point people
right to that

○ “tags” and “releases” on GitHub can make this easier when you have a particular commit you
want to share (but we won’t be covering that in this workshop)

The package layer

● Research software tools in bioinformatics (and beyond) are often published as
packages for R or Python
○ Examples: Seurat, scanpy, tidyverse, pandas, Bioconductor packages

● This makes them generally easy to install and update as research progresses
○ BUT easy to update means things can change fast

○ New versions may change results, even for existing functions!

■ Newer isn’t always better; sometime you want to stick with the old way

○ Dependencies on other packages may require specific versions of other packages

Documenting package versions in R

● sessionInfo() is your friend
○ or sessioninfo::session_info()

But how do you recreate the same set of packages?

Installing packages based on sessionInfo() output could be very tedious!

Enter renv!

● renv is an R package for tracking, freezing, and sharing R environments, including
all of the package versions that were installed.

● Each project can have its own environment, with its own set of packages
○ Different projects may require different versions of packages

○ renv can help manage these different sets of package versions

● When sharing a project/analysis, using renv allows everyone stay in sync with
same packages and versions

https://rstudio.github.io/renv/index.html

How does renv work?

Rather than using the system R package library, renv creates a library for each
project that R will use when running code for the project ("Project Library")

This renv-created library could be large, so we can’t reasonably share the whole
thing.

Instead, we create a file (renv.lock) that describes the library.

renv uses this file to track all of the packages we are using, and recreate the library
with those packages as needed.

renv initialization

In the console, enter:

renv::init()

Lots of text will scroll by, and your
R session will restart.

That’s it! You are starting to track
your R packages!

What did renv::init() do?

Added an renv.lock file, renv/ folder
and .Rprofile file
(or modified the one you had)

The .Rprofile file is run when R
launches for this project, and it contains a
command to configure renv on launch.

The renv/ folder is where the Project
Library and support files can be found

Newly installed packages for the project
will be stored in this Project Library

The renv.lock file

Taking a snapshot creates or updates the
renv.lock file at the base of your project.

This file records…
● Which packages are installed
● The package versions
● Where the packages came from

Do not edit this file manually!

Updating the renv.lock file
An “renv” menu now
appears in the Packages
pane

Use “Snapshot Library…”
to update the renv.lock
file to the current setup,
e.g. after you update or
install new packages

 Alternatively, in the
console enter:
renv::snapshot()

Restoring a library from an renv.lock file

When working on a new machine, or if someone else updated the renv.lock file,
you may need to update the Project Library

Follow the instructions! Enter renv::restore() in the console (or use the renv
menu "Restore Library" option) to sync your Package Library with the recorded
versions, installing any missing packages.

Which packages are included in renv.lock?

You might have many packages installed, but only use some in a given project.

renv tries to be smart about this, and only includes packages that it finds used

within code in the project folder, or packages that are required by the packages

that are used (so-called dependencies)

Sometimes renv misses a package (particularly for packages with optional dependencies),

and you might need to create a file (we usually call ours dependencies.R) that only

contains lines like:

 library(missing_package)

which will force renv to include that package in the lockfile.

Other package management systems

● renv is pretty useful, but it only gets us so far… only R packages (and a bit of
Python, in some situations)
○ For software outside R, other package management systems are required

● conda is one of the more popular and flexible package managers
○ Started as a Python package manager, but it can be used for any command line software

○ Like renv, you can create separate sets of software with different versions for different projects

○ LOTS of bioinformatics software available through bioconda

○ https://bioconda.github.io/user/install.html

● Docker and Singularity are another level up
○ “Containers” that include everything from the operating system up

○ Run one OS inside another, with all the things frozen to particular versions

○ Cloud platforms love containers…

https://bioconda.github.io/user/install.html

