
Shell scripting
Childhood Cancer Data Lab

Shell scripts keep a living record of your UNIX-ing

● Using the command line interactively is great, but your commands aren’t
actually saved

○ (ok, they are saved in your command history, but command histories are NOT a reliable place to

implicitly record your work! For one, they are not infinite…)

● Shell scripts are files that run shell and UNIX commands
○ Both preserves the history of the commands you ran, and runs them!

The anatomy of a shell script

We generally like to run scripts from the
directory where they are saved to avoid
path confusion

cd ~/Projects/example_project/scripts

Once in the right directory, we run this
script from the terminal as:

bash example.sh

Best practices in scripting

The very first line of shell scripts often contain a shebang (#!) indicating which shell interpreter be used
when running this shell script.

This script will use the BASH shell

The path to the given shell interpreter immediately follows (no spaces!) the #!

The shebang can be generally used to make any script executable, for interpretable languages.
It also cues you in to what language the code is in.

#!/usr/local/bin/python3 #!/usr/bin/env python
#!/usr/bin/env bash

Best practices in scripting

We like to use set to define preferences for how errors should be handled while running this script

● The -e flag causes the script to exit if any step has an error
● The -u flag causes the script to exit if a variable isn't defined
● The -o pipefail option causes the entire script to fail if any step in a pipeline fails

Note these can be used one-at-a-time, or pick only some options! All of these are legit
(but o pipefail has to be kept together, and usually last):

set -e
set -u
set -o pipefail
set -eo pipefail

Defining variables

Variables are defined as VARIABLE_NAME="CONTENT" without any spaces!!

(Using quotes when defining variables is not strictly required, but it is best practice.)

Variables are used with dollar signs: $CONTENT, and sometimes braces: ${CONTENT}

(Note there are more types of variables, like arrays, which are defined and used slightly
differently! We'll just focus on single-value variables here).

Use double quotes when referring to variables

✅ ❌
DATA_DIR=data

echo $DATA_DIR

data

echo "$DATA_DIR"

data

echo '$DATA_DIR'

$DATA_DIR

Variations on a variable

You can combine variables with strings directly:

DATA_DIR="../data"
INPUT_FILE="processed_data.csv"
OUTPUT_FILE="renamed_$INPUT_FILE"

You can set up your variables to contain the path, if you want
(and it makes sense for the code!)

DATA_DIR="../data"
INPUT_PATH="$DATA_DIR/processed_data.csv"
OUTPUT_PATH="$DATA_DIR/renamed_processed_data.csv"

Use curly braces {} to combine variables safely

DATA_DIR="../data"
INPUT_FILE="processed_data.csv"
PREFIX="renamed"
OUTPUT_FILE="${PREFIX}_${INPUT_FILE}"

Curly braces protect the variable

✅ ❌

INPUT_FILE="processed_data.csv"

PREFIX="renamed"

echo "${PREFIX}_${INPUT_FILE}"

renamed_processed_data.csv

echo "$PREFIX_$INPUT_FILE"

processed_data.csv

Putting it all together

Now let's write a script to…

● Download paired FASTQ reads (R1 and R2 files) programmatically - no
"point-and-click" in browser!!

○ https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP255885

● Save these files to the appropriate directory in your forked repository

● Ask how many lines are in each FASTQ file

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP255885

