
Setting up Git on a new computer
(our RStudio Server)

Childhood Cancer Data Lab

Setting up Git on a new computer

1. Set up a .gitconfig file to tell Git some of your configuration settings
○ At a minimum, the name and email associated with your commits
○ There are many settings you can add to your configuration file!
○ We will use the git config command to add settings to this file

2. Set up credentials to securely link with your account on GitHub.com

Approaches to Git credentials: HTTPS or SSH

● HTTPS (we'll be doing this one!)
○ Common choice for beginners

○ Authenticate with username and token (Git no longer allows password auth vis https)

■ Personal Access Token (PAT): securely scoped token linked to your GitHub account which

you can use instead of a password when working on command line

● SSH: Secure Shell
○ Connects with paired local private key and remote public keys

○ The private key stored locally and encrypted

○ Common choice for more advanced Git users

We'll use HTTPS with a PAT for this workshop

● Read more about Personal Access Tokens on GitHub and scopes

We'll set it to expire in 1 week

We'll provide it "repo" scope

Other useful repo scopes
● user: Read/write access to

profile info only.

● gist: Write access to GitHub
gists ("blog posts"-ish)

● notifications: Read access to
notifications, mark as read

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

Let's get set up!

In the Terminal, we'll begin with these commands:

Tell GitHub your email and username associated with commits

git config --global user.email "your_email@example.com"

git config --global user.name "name"

Cache credentials for 12 hours (aka, type in your PAT fewer times)

git config --global credential.helper "cache --timeout=43200"

(Optional but useful!) Name default branches "main"

git config --global init.defaultBranch "main"

Now we'll set up our PAT and save it securely

On GitHub.com, go to:

Settings > Developer Settings > Personal Access Tokens

Protips!

● Once the PAT is created, you only get one chance to save it. Don't close the

window before saving!
● Password Managers are your friend for securely storing tokens (and more)

Next, we'll create our repository

1. Run git init in Terminal to initialize a repository in ~/training-modules

2. Add and commit an initial set of files

3. Create an empty repository on GitHub.com so there is a remote to push to

4. Tell Git where to push to, and push!

Using Git from the command line
Staging files for commits (briefly…)
Add a new or modified file to the commit
git add <name of file>

Remove a file from version control
git rm <name of file>

Add all files in a directory (DANGER!)
git add .

Stephanie's greatest hits

What changes did I make?
git diff <name of modified file>

What's my status?
git status

Woops! I didn't mean to change that
(unstaged) file
git restore <name of modified file>

Woops! I didn't mean to stage that
file
git reset <name of staged file>

Commit your changes

Provide a commit message on the command line
git commit -m "Informative commit message"

Drawbacks of using git commit -m

● You don't get any clear indication of which files you're committing when you run
the command
○ Protip: Avoid this mystery by running git status first!

● You can only provide a short message, which is usually fine, but more involved

situations may merit a more detailed commit message

You can just use git commit without a flag, but…

● …you'll also get thrown into the command line text editor vi which may not be
a pleasant experience!

● Don't want to get stuck in vi?

git config --global core.editor <editor-i-like-more>

for example:
git config --global core.editor nano
git config --global core.editor emacs

Escaping the vi text editor

Did you end up here by
accident and now you're
stuck????

Type the following:

:wq

And hit enter!

→ Aborting commit due
to empty commit message.

Then, you'll have to redo
the commit.

Pushing to origin

● Before we can push, we have to tell Git where to push to

● The first time you push to a new branch, you have to tell Git which branch

(remember, even the main branch doesn't exist yet on GitHub!)

Tell git about the repo's remote URL.
We use the literal URL since we're using HTTPS auth
git remote add origin {REMOTE-URL}

The first time you push to a new branch, use -u origin BRANCH
git push -u origin main

Moving forward in this branch, we can just do...
git push

Protip!

You can skip the -u origin main bit it you add this to your config file:

Learn more about what you can specify in your config file!

● Atlassian docs
● Git docs

Always automatically create the remote branch upon pushing

git config --global push.autoSetupRemote "true"

https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-config
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

Helpful commands for working with branches

create new branch (-c) and switch to it
git switch -c new-feature-branch

unless you set your config as in the last slide, the first push
requires `-u origin <name of remote branch to create>`
git push -u origin new-feature-branch

note that you can switch back to any existing branch, e.g. main, with:
git switch main

