Setting up Git on a new computer

(our RStudio Server)
Childhood Cancer Data Lab

Setting up Git on a new computer

1. Setupa .gitconfig fileto tell Git some of your configuration settings

o At aminimum, the name and email associated with your commits
o There are many settings you can add to your configuration file!
o Wewillusethegit configcommand to add settings to this file

2. Setup credentials to securely link with your account on GitHub.com

Approaches to Git credentials: HTTPS or SSH

e HTTPS (we'll be doing this one!)

o Common choice for beginners
o Authenticate with username and token (Git no longer allows password auth vis https)
m Personal Access Token (PAT): securely scoped token linked to your GitHub account which
you can use instead of a password when working on command line

e SSH: Secure Shell

o Connects with paired local private key and remote public keys
o The private key stored locally and encrypted
o Common choice for more advanced Git users

We'll use HTTPS with a PAT for this workshop

e Read more about Personal Access Tokens on GitHub and scopes

New personal access token (classic)

Personal access tokens (classic) function

like ordinary OAuth access tokens. They can be used instead of a password

for Git over HTTPS, or can be used to authenticate to the API over Basic Authentication.

Note

What's this token for?

Expiration *

30 days 4 The token will expire on

Wed, Sep 4 2024

We'll set it to expire in 1 week

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo

[repo:status

] repo_deployment
[public_repo

[repo:invite

[] security_events

Full control of private repositories
Access commit status

Access deployment status (] . . n n

Access public repositories We I I p rOVI d e I t re pO S CO pe
Access repository invitations

Read and write security events

] workflow

[J write:packages
[] read:packages

[delete:packages

[7) admin:org
[write:org
[] read:org

Update GitHub Action workflows

Upload packages to GitHub Package Registry
Download packages from GitHub Package Registry

Delete packages from GitHub Package Registry

Full control of orgs and teams, read and write org projects
Read and write org and team membership, read and write org projects

Read org and team membership, read org projects

Other useful repo scopes
e user:Read/write access to
profile info only.

e gist:Writeaccessto GitHub
gists ("blog posts"-ish)

e notifications: Read accessto
notifications, mark as read

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps

Let's get set up!

In the Terminal, we'll begin with these commands:

Tell GitHub your email and username associated with commits
git config --global user.email "your email@example.com"

git config --global user.name '"name"

Cache credentials for 12 hours (aka, type in your PAT fewer times)

git config --global credential.helper "cache --timeout=43200"

(Optional but useful!) Name default branches "main"

git config --global init.defaultBranch "main"

Now we'll set up our PAT and save it securely

On GitHub.com, go to:

Settings > Developer Settings > Personal Access Tokens

Protips!

e Oncethe PAT iscreated, you only get one chance to save it. Don't close the

window before saving!
e Password Managers are your friend for securely storing tokens (and more)

Next, we'll create our repository

1. Rungit initinTerminaltoinitialize arepositoryin~/training-modules

2. Add and commit aninitial set of files

3. Create an empty repository on GitHub.com so there is a remote to push to

4. Tell Git where to push to, and push!

Using Git from the command line

Staging files for commits (briefly..)
Add a new or modified file to the commit
git add <name of file>

Remove a file from version control
git rm <name of file>

Add all files in a directory (DANGER!)
git add

Commit your changes

Provide a commit message on the command line
git commit -m "Informative commit message"

Stephanie's greatest hits

What changes did I make?
git diff <name of modified file>

What's my status?
git status

Woops! I didn't mean to change that
(unstaged) file
git restore <name of modified file>

Woops! I didn't mean to stage that
file
git reset <name of staged file>

Drawbacks of usinggit commit -m

e Youdon't get any clear indication of which files you're committing when you run

the command
o Protip: Avoid this mystery by runninggit status first!

e You canonly provide a short message, which is usually fine, but more involved
situations may merit a more detailed commit message

You canjustuse git commit without aflag, but...

e ..you'll also get thrown into the command line text editor vi which may not be
a pleasant experience!

e Don'twanttogetstuckinvi?

git config --global core.editor <editor-i-like-more>

for example:
git config --global core.editor nano
git config --global core.editor emacs

Escaping the vi text editor

Please enter the commit message for your changes. Lines starting Did you end up here by
with '"#' will be ignored, and an empty message aborts the commit. accident and now you're

stuck????

On branch main
Your branch is up to date with 'origin/main’.

Type the following:

Changes to be committed:
new file: download_fastq.sh

And hit enter!

— Aborting commit due
to empty commit message.

Then, you'll have toredo
the commit.

Pushing to origin

e Before we can push, we have to tell Git where to push to

Tell git about the repo's remote URL.
We use the literal URL since we're using HTTPS auth
git remote add origin {REMOTE-URL}

e The first time you push to a new branch, you have to tell Git which branch
(remember, even the main branch doesn't exist yet on GitHub!)

The first time you push to a new branch, use -u origin BRANCH
git push -u origin main

Moving forward in this branch, we can just do...
git push

Protip!

You canskipthe -u origin main bit it you add this to your config file:

Always automatically create the remote branch upon pushing

git config --global push.autoSetupRemote "true"

Learn more about what you can specify in your config file!

e Atlassian docs
e Gitdocs

https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-config
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

Helpful commands for working with branches

create new branch (-c¢) and switch to it
git switch -c new-feature-branch

unless you set your config as in the last slide, the first push
requires -u origin <name of remote branch to create>"
git push -u origin new-feature-branch

note that you can switch back to any existing branch, e.g. main, with:
git switch main

