
Single-cell RNA-seq Data in R:
Import, QC, Normalize, & Visualize

The Data Lab

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type

Single sample scRNA-seq overview

Quantify expression
for each gene and
droplet

Select droplets
containing intact
cells

Correct for
differences in
sequencing depth
among cells

Focus on major axes
of variation to
reduce noise &
simplify visualization

Group cells with
similar expression
patterns

Identify genes that
distinguish clusters

Look for enrichment
of known markers or
pathways

Assign labels to each cell using
known references or manual
annotation

Preprocess & Import

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type

Mapping &
Quantification

Cell Ranger
salmon/alevin-fry

Import to R

read10xCounts()
tximeta()

● Mapping & Quantification
○ Start with raw FASTQ files & a reference genome/transcriptome
○ End with a gene-by-cell count matrix (format varies by tool)
○ Cell Ranger is the most common tool
○ CITE-seq & cell hashing may require specialized processing

● Import to R
○ We will be using R/Bioconductor for processing and analysis
○ Commands for import vary based on the quantification tool used

and file formats
○ R object we want to end up with is a SingleCellExperiment

The SingleCellExperiment class

● During this workshop, we will be working mostly with the Bioconductor suite of R packages

● Its main data class for storing single-cell data is the SingleCellExperiment (SCE)

https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html

https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html

Importing Data

● Single-cell data, after preprocessing/quantification* (or whenever you get it),
may be in a variety of formats:
○ “Sparse” matrix files (mtx)

○ HDF5 files (from CellRanger, often)

○ LOOM (a special kind of HDF5)

○ AnnData (another special kind of HDF5 used by many Python tools)

○ SCE objects (in .rds files)

○ Seurat objects (in .rds files)

○ Excel tables

● Each type may require a different function for importing to an SCE object…
○ DropletUtils::read10xCounts()
○ seurat::as.SingleCellExperiment()
○ zellkonverter::readH5AD()

* we are not covering preprocessing here, but ask us about it!

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type
QC, Filter, & Normalize

Cell-level statistics
addPerCellQC()

Filter disrupted cells
miQC

● Quality Control and Filtering
○ Identify and remove low-quality cells

■ Empty droplets
■ Damaged/disrupted cells
■ Poorly sequenced cells (low counts)

● Normalization
○ Goal: Mitigate the effects of variation in sequencing depth across

cells
○ Produce a log-scale counts matrix we can use for comparisons

among cells

Remove empty droplets
emptyDropsCellRanger()

Normalize counts
logNormCounts()

Initial Quality Control

● After preprocessing, you may have a raw and/or filtered matrix of count data
○ Gene × Droplet (cell) matrix with separate counts for each gene in each droplet

● Primary filtering is to remove “empty” droplets that did not contain a cell
○ Methods have changed over time, so different versions of Cell Ranger may have different

contents of the filtered matrix

○ If you start with the raw matrix and filter yourself, you will know what was done!

■ and maybe can compare across versions, but other caveats for Cell Ranger version changes

exist too!

■ the raw matrix is not usually too much larger, because the filtered droplets have mostly

zero counts

Filtering damaged/disrupted/dying cells

● During library preparation, cells may be broken prematurely
○ mRNA in the cytoplasm leaks out, giving unreliable (and usually lower) counts

○ mRNA in the mitochondria has an extra layer of protection (or 2) and will not leak out as readily

○ We can use the percentage of mitochondrial mRNA as an extra QC measure

○ But what cutoff should we use?

● miQC (Hippen et al. 2021) is a method that

combines the total counts and the percentage

of mitochondrial genes to identify

likely-disrupted cells
○ https://doi.org/10.1371/journal.pcbi.1009290

https://doi.org/10.1371/journal.pcbi.1009290

Normalization

● The number of reads per cell often varies
○ This technical variation may mask biological variation

○ Normalization corrects per-cell counts for read depth

Preprocess
& Import

QC, Filter,
& Normalize

Dimension
reduction

Cluster
Find

markers
Gene set
analysis

Cell type
Dimension reduction

PCA

runPCA()

UMAP

runUMAP()

● Transcriptome data is highly multidimensional
○ Each gene’s expression measurement is a separate dimension

○ Expression is often correlated among genes

● Goal: a more compact representation of the expression data

with fewer dimensions
○ Reduce uninformative and redundant information

○ Increase “signal-to-noise” ratio

○ Speed up downstream calculations

○ Allow us to make visualizations that capture the important

variation in the data

Identify variable genes

modelGeneVar()

Dimensionality Reduction Methods

● Feature selection
○ Select the most (biologically) variable genes

● Principal Components Analysis
○ linear transformation of input data
○ usually to tens of dimensions
○ removes much of the noise; retains most of the signal
○ useful as input to many downstream analyses (clustering, etc.)

● UMAP and/or tSNE
○ reduce down to 2 or 3 dimensions
○ transformation is highly non-linear
○ much slower than PCA
○ nice for visualization, but be careful!

■ distances between points may be misleading
■ similar challenge to squashing a globe onto

a flat map… but more extreme!

https://doi.org/10.1038/nbt.4314

https://doi.org/10.1038/nbt.4314

Clustering Cells

Dimensionality reduction often results in visible “clusters”, but how do we define
those?

Many methods!

● hierarchical clustering
○ join closest points/groups recursively

● k-means clustering
○ pick a number k, then find the “best” way to divide cells into that many groups

○ assumes clusters are “spherical”

● graph-based clustering
○ Connect cells to other cells with similar expression, then divide up the graph into clusters

Graph-based Clustering

Step 1: Calculate similarity matrix among points

Step 2: Build a weighted network graph
connecting points to their neighbors

Step 3: Divide network graph into
“neighborhoods” based on connection patterns

Many options at each step! The algorithms can
determine how many clusters to assign.

Image from:
https://github.com/benedekrozemberczki/awesome-community-detection

https://github.com/benedekrozemberczki/awesome-community-detection

What do the clusters represent?

● Groups of cells with distinct gene expression patterns
● What does that mean?

○ maybe cell types?

○ sometimes cell states?

○ perhaps perturbations?

● Interpretation will vary based on the sample you are using!
○ do not expect a simple mapping of clusters to cell types

● Clustering is usually somewhat stochastic
○ parameter choice and random seeds will affect clusters

○ use caution when interpreting clustering results!

○ quantitative methods to evaluate cluster quality exist, but can be challenging to interpret

