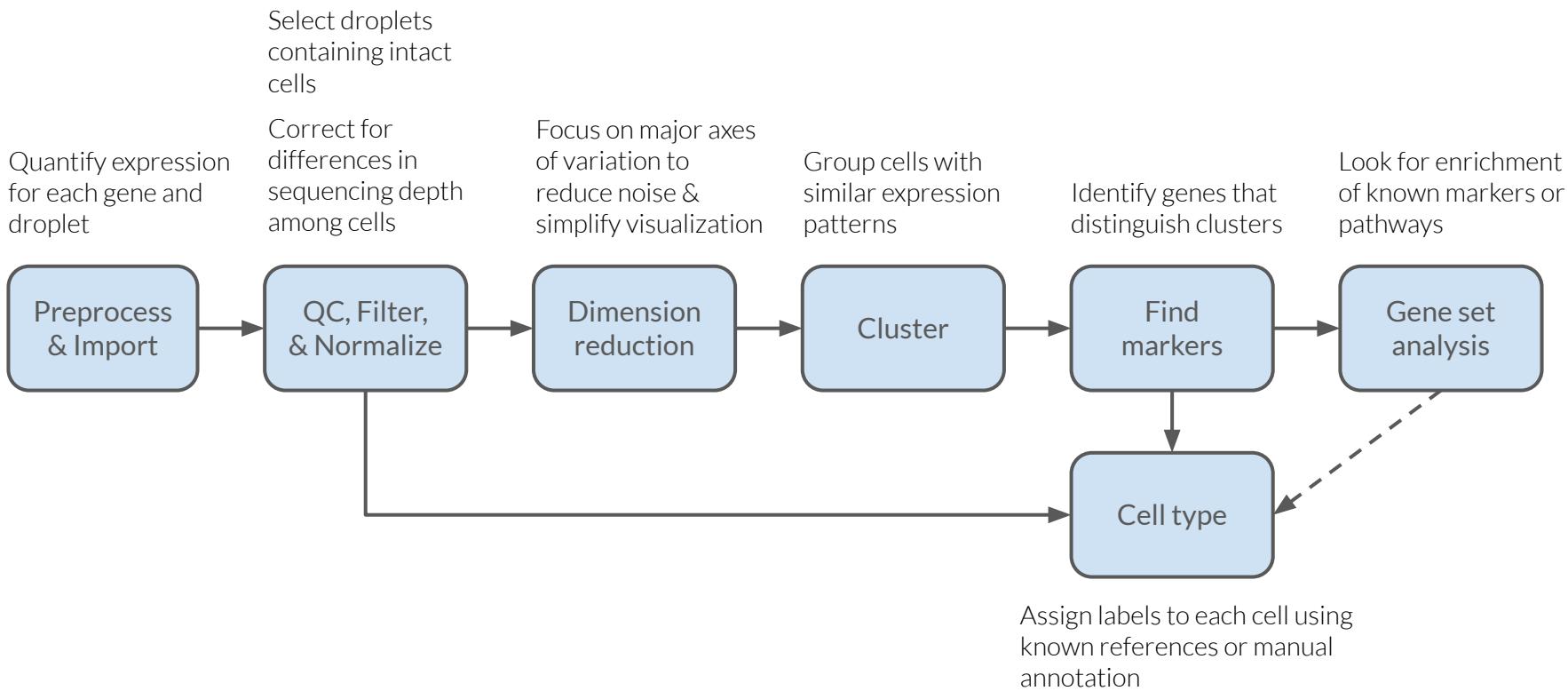
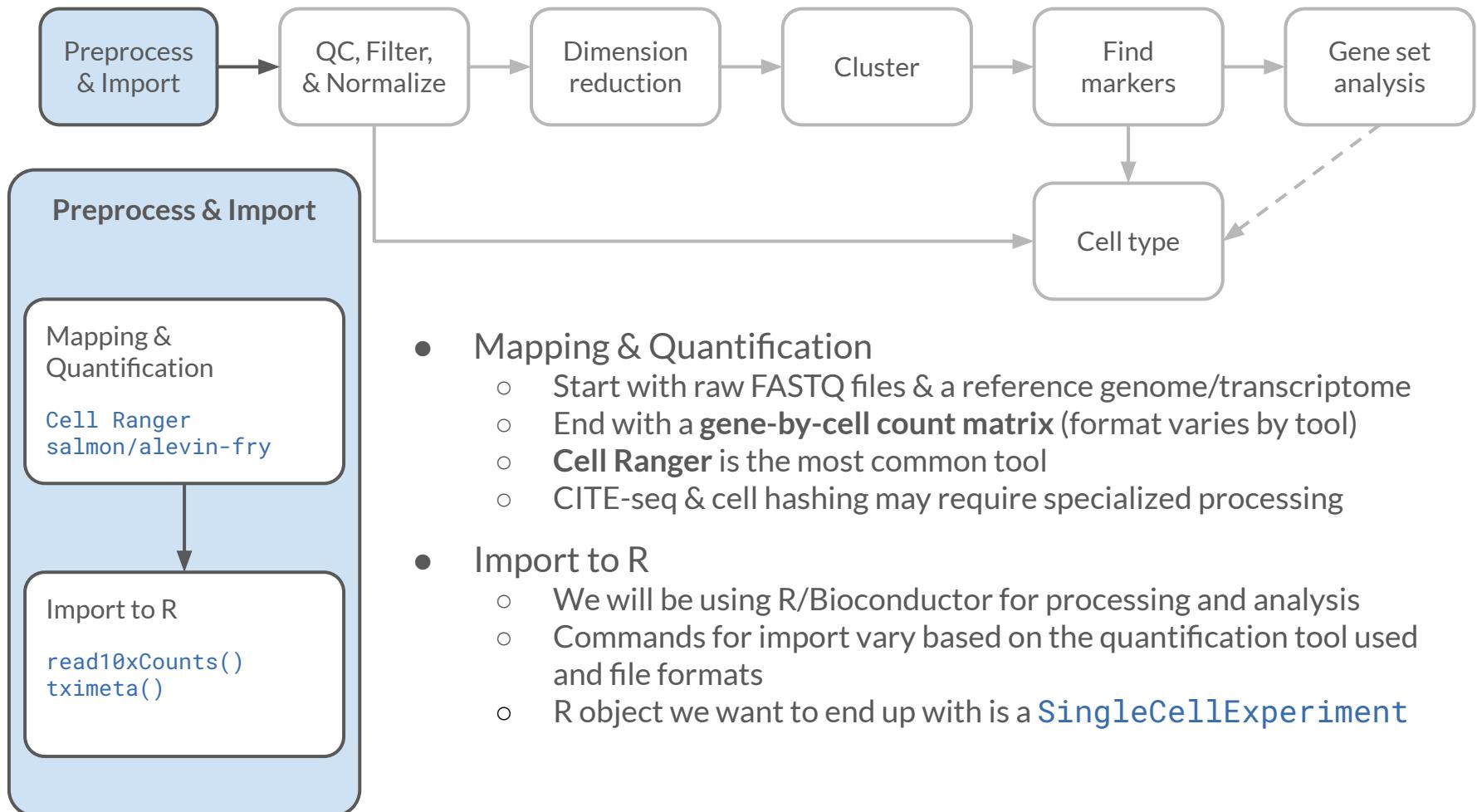


Single-cell RNA-seq Data in R: Import, QC, Normalize, & Visualize

The Data Lab

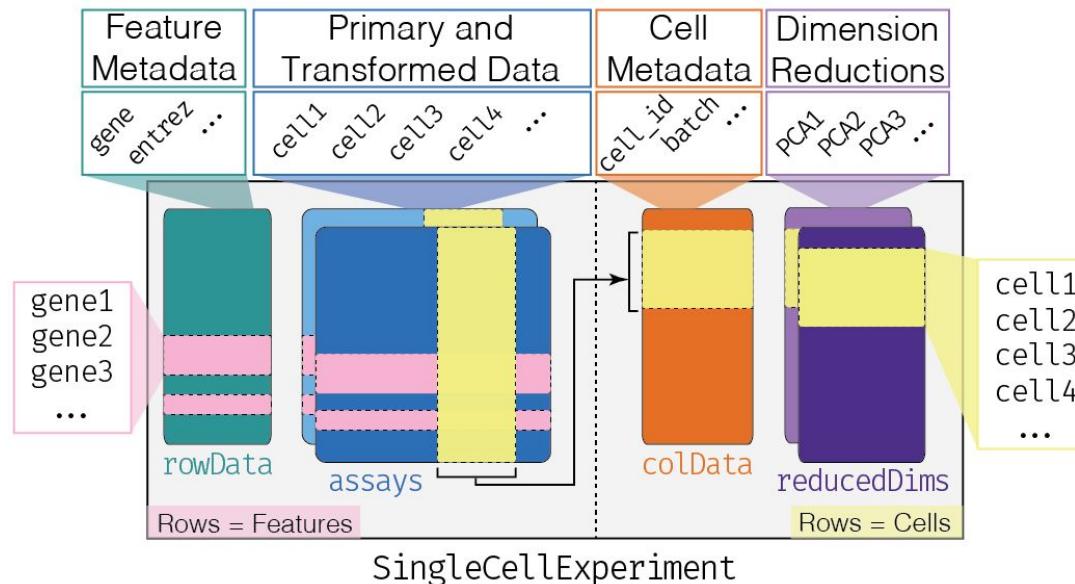
Single sample scRNA-seq overview





The SingleCellExperiment class

- During this workshop, we will be working mostly with the Bioconductor suite of R packages
- Its main data class for storing single-cell data is the SingleCellExperiment (SCE)

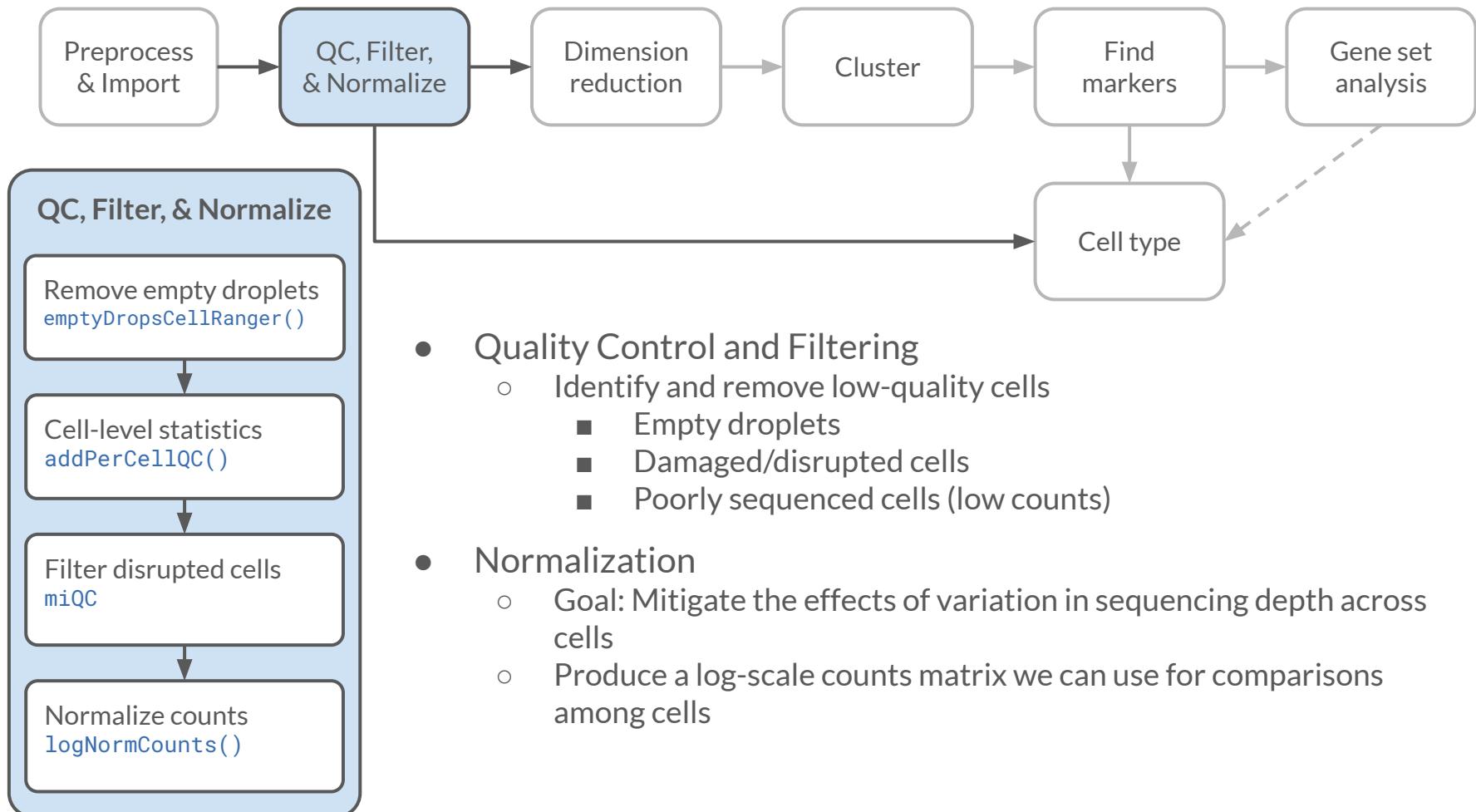


<https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html>

Importing Data

- Single-cell data, after preprocessing/quantification* (or whenever you get it), may be in a variety of formats:
 - “Sparse” matrix files (mtx)
 - HDF5 files (from CellRanger, often)
 - LOOM (a special kind of HDF5)
 - AnnData (another special kind of HDF5 used by many Python tools)
 - SCE objects (in .rds files)
 - Seurat objects (in .rds files)
 - Excel tables
- Each type may require a different function for importing to an SCE object...
 - `DropletUtils::read10xCounts()`
 - `seurat::as.SingleCellExperiment()`
 - `zellkonverter::readH5AD()`

* we are not covering preprocessing here, but ask us about it!

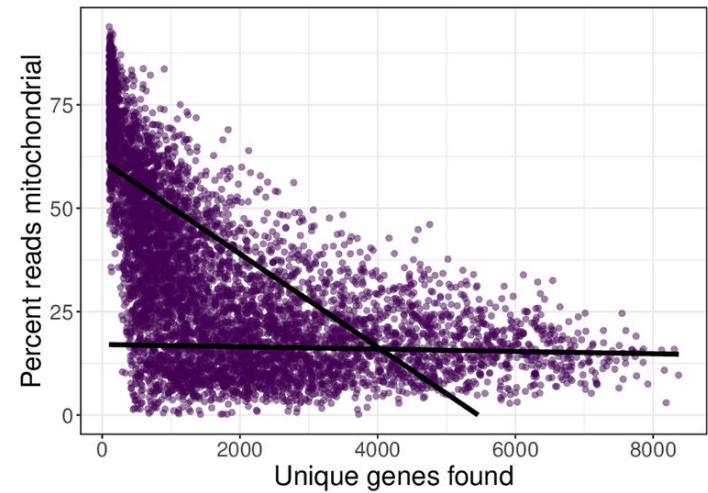


Initial Quality Control

- After preprocessing, you may have a raw and/or filtered matrix of count data
 - Gene × Droplet (cell) matrix with separate counts for each gene in each droplet
- Primary filtering is to remove “empty” droplets that did not contain a cell
 - Methods have changed over time, so different versions of Cell Ranger may have different contents of the filtered matrix
 - If you start with the raw matrix and filter yourself, you will know what was done!
 - and *maybe* can compare across versions, but other caveats for Cell Ranger version changes exist too!
 - the raw matrix is not usually too much larger, because the filtered droplets have mostly zero counts

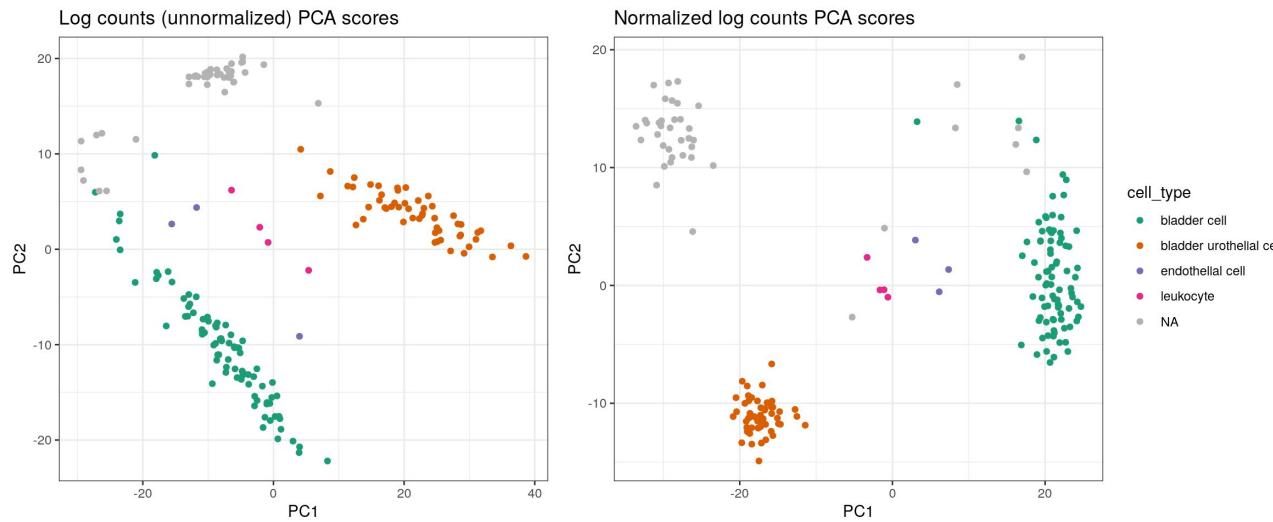
Filtering damaged/disrupted/dying cells

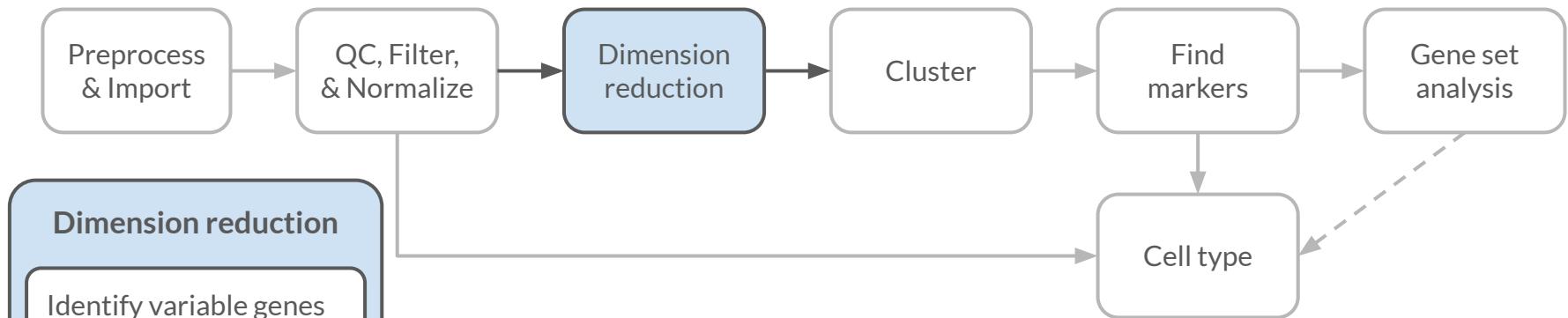
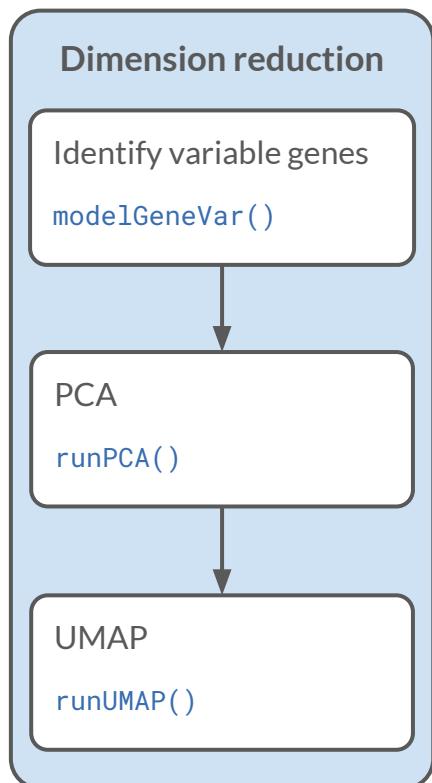
- During library preparation, cells may be broken prematurely
 - mRNA in the cytoplasm leaks out, giving unreliable (and usually lower) counts
 - mRNA in the mitochondria has an extra layer of protection (or 2) and will not leak out as readily
 - We can use the percentage of mitochondrial mRNA as an extra QC measure
 - But what cutoff should we use?
- miQC (Hippen *et al.* 2021) is a method that combines the total counts and the percentage of mitochondrial genes to identify likely-disrupted cells
 - <https://doi.org/10.1371/journal.pcbi.1009290>



Normalization

- The number of reads per cell often varies
 - This technical variation may mask biological variation
 - Normalization corrects per-cell counts for read depth

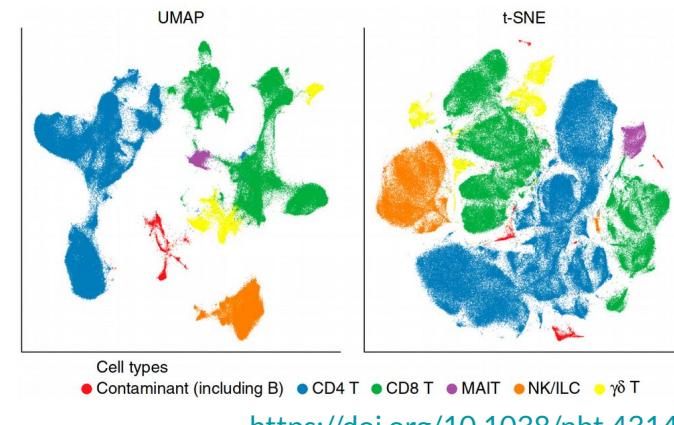




- Transcriptome data is highly multidimensional
 - Each gene's expression measurement is a separate dimension
 - Expression is often correlated among genes
- Goal: a more compact representation of the expression data with fewer dimensions
 - Reduce uninformative and redundant information
 - Increase “signal-to-noise” ratio
 - Speed up downstream calculations
 - Allow us to make visualizations that capture the important variation in the data

Dimensionality Reduction Methods

- Feature selection
 - Select the most (biologically) variable genes
- Principal Components Analysis
 - linear transformation of input data
 - usually to tens of dimensions
 - removes much of the noise; retains most of the signal
 - useful as input to many downstream analyses (clustering, etc.)
- UMAP and/or tSNE
 - reduce down to 2 or 3 dimensions
 - transformation is highly non-linear
 - much slower than PCA
 - nice for visualization, but be careful!
 - distances between points may be misleading
 - similar challenge to squashing a globe onto a flat map... but more extreme!



Clustering Cells

Dimensionality reduction often results in visible “clusters”, but how do we define those?

Many methods!

- hierarchical clustering
 - join closest points/groups recursively
- k-means clustering
 - pick a number k , then find the “best” way to divide cells into that many groups
 - assumes clusters are “spherical”
- graph-based clustering
 - Connect cells to other cells with similar expression, then divide up the graph into clusters

Graph-based Clustering

Step 1: Calculate similarity matrix among points

Step 2: Build a weighted network graph connecting points to their neighbors

Step 3: Divide network graph into “neighborhoods” based on connection patterns

Many options at each step! The algorithms can determine how many clusters to assign.

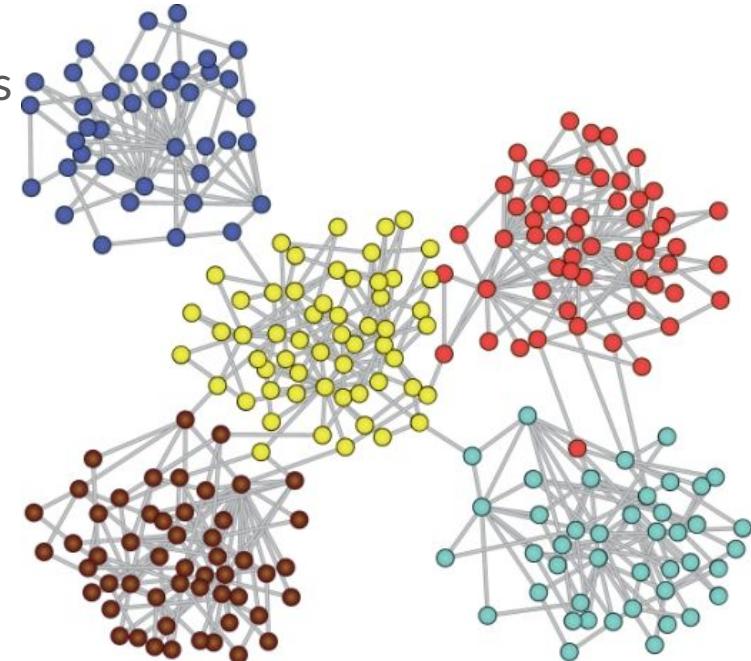


Image from:

<https://github.com/benedekrozemberczki/awesome-community-detection>

What do the clusters represent?

- Groups of cells with distinct gene expression patterns
- What does that mean?
 - maybe cell types?
 - sometimes cell states?
 - perhaps perturbations?
- Interpretation will vary based on the sample you are using!
 - do not expect a simple mapping of clusters to cell types
- Clustering is usually somewhat stochastic
 - parameter choice and random seeds will affect clusters
 - use caution when interpreting clustering results!
 - quantitative methods to evaluate cluster quality exist, but can be challenging to interpret