
Integrating Multiple Samples
in Single-cell RNA-seq

The Data Lab

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Integrate Cluster

Cell type
Differential
Expression

Cell type

Working with multiple samples in scRNA-seq

Identify genes with
expression differences
among samples
(within a cell type)

Combine and
harmonize samples
for processing

Identify combined
axes of variation
across a set of
samples

Correct for
individual and batch
effects among
samples

Group cells across
samples with similar
(corrected)
expression patterns

Infer cell labels across
samples

Why integrate samples?

The goal of integration is to mitigate the batch effects caused by technical variation
across samples, while still preserving biological information.

● Let's call each sample a "batch" of cells
● Cells in a given sample will share some technical variation
● This becomes a problem when we want to jointly consider several samples

○ Cells within a given sample appear more similar than they are, simply because they're from the

same sample.

● To compare cells across samples, we need to account for this batch-level
technical variation. Then, we can hopefully hone in on the more interesting
biological variation 🕵

What can('t) integration do for you?

● Integration is performed on reduced dimension representations (often principal
components)

○ Integration also returns reduced dimension representations for downstream use

○ Some integration methods will "back-calculate" corrected gene expression values, but these

aren't as important as you think!

○ For example, we do not use these for differential expression (stay tuned for more!)

○ Recommended reading on when to use, and not to use, corrected expression values:

http://bioconductor.org/books/3.20/OSCA.multisample/using-corrected-values.html

● Integration allows us to…
○ Jointly visualize cells from multiple datasets

○ Jointly cluster cells from multiple datasets

○ Annotate or identify similar cell types across datasets

http://bioconductor.org/books/3.20/OSCA.multisample/using-corrected-values.html

What does successful integration look like?

Figure adapted from Lueken et al. (2022) https://doi.org/10.1038/s41592-021-01336-8

Before integration, the primary
"clustering" is by batch

● Orange tends to group
with orange, green with
green, etc.

After successful integration:
● Batches show lots of mixing
● Cell types ("biology") cluster together,

and do not show lots of mixing

Successful integration depends on shared
information across batches.

https://doi.org/10.1038/s41592-021-01336-8

Example of (what looks like!) successful integration

Before integration After integration

Gayoso et al. (2021) https://doi.org/10.1038/s41592-020-01050-x

spleen/lymph node samples
from two different mice

https://doi.org/10.1038/s41592-020-01050-x

How to evaluate integration

● Compare before and after UMAP vibes
○ Before integration, batches (datasets) will mostly cluster together

○ After integration…

■ Batches should not group together but should be highly mixed across the UMAP

■ Biologically similar cells (tissue, cell type, disease vs healthy) should group together

○ Usually, when it fails, it fails.

● There are several metrics for evaluating batch correction
○ Luecken et al. (2022) is an excellent reference https://doi.org/10.1038/s41592-019-0619-0

○ Caution: Metrics do not measure "was integration successful," but other proxies which

sometimes can help us tell if integration was successful (or at least not unsuccessful)

https://doi.org/10.1038/s41592-019-0619-0

How I stopped worrying and learned to love (the) UMAPs

● Some examples from Luecken et al. (2022)
○ Luecken, M.D., Büttner, M., Chaichoompu, K. et al. Benchmarking atlas-level data integration in

single-cell genomics. (2022). https://doi.org/10.1038/s41592-021-01336-8

○ Panels from Figure S13 are shown on the next two slides

■ https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-021-01336-8/Medi

aObjects/41592_2021_1336_MOESM1_ESM.pdf

https://doi.org/10.1038/s41592-021-01336-8
https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-021-01336-8/MediaObjects/41592_2021_1336_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-021-01336-8/MediaObjects/41592_2021_1336_MOESM1_ESM.pdf

Top 4 "best" integration methods

Bottom 4 "worst" integration methods

Top 4 "best" integration methods

Bottom 4 "worst" integration methods

Over-correction leads to loss of distinct biology

Integration of cerebral organoids generated from seven different human PSC lines

https://doi.org/10.1186/s13059-020-02147-4

Cell types

Sample

https://doi.org/10.1186/s13059-020-02147-4

Will it integrate?

● Datasets that don't have shared cell types or states will be hard to integrate
○ Patient and xenograft

○ Tumor and normal

○ Data from different tissue types

○ Data from different organisms

● The extent of "overlap" among datasets may also influence which integration
method you should use, along with the results themselves

An example of failed integration

Integration in scRNA-seq overview

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Cluster

Cell type
Differential
Expression

Cell type

Integrate

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Integrate Cluster

Cell type
Differential
Expression

Cell type

Merge

Organize SCE objects
into a named list

Add batch information
to SCEs and format for
merging

Merge compatible SCE
objects together
cbind()

● It's useful to merge SCEs together for many downstream analyses, but

this merging requires some bookkeeping:

○ After merging, how can we still tell which batch (sample) each

cell came from?

■ We need to add this information into SCEs

○ Are SCEs formatted such that R will let us merge them?

■ They need to have compatible column and row names

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Integrate Cluster

Cell type
Differential
Expression

Cell type

Dimension reduction ● Dimension reduction techniques like PCA and UMAP start by scaling
data to be centered at 0.

● To use PCA/UMAP across samples, we need to calculate the variation
jointly. Otherwise, we will be misled!

Start with merged SCE

Calculate a
batch-weighted PCA
MultiBatchPCA()

Calculate a UMAP from
the batch-weighted PCA
runUMAP()

PCA/UMAP calculated separately on each sample PCA/UMAP calculated jointly on all samples together

This looks integrated but it's not!! This is your "before" UMAP

the (0, 0) coordinate

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Cluster

Cell type
Differential
Expression

Cell type

Integrate

Start with the merged SCE
principal components

Perform integration to
obtain batch-corrected
principal components
fastMNN()
RunHarmony()

Evaluate integration
results

Integrate

● We can evaluate results by…

○ Comparing before/after UMAPs

○ Calculating metrics that tell us how well cells and batches

mix

● If integration is successful, we should see…

○ Batches are well-mixed across the UMAP

○ Cell types (or similar biological grouping, if known) group

together separately

○ Remember: Success depends on overlap among batches

Let's have a closer look at methods we'll be using

● MNN: Mutual nearest neighbors
○ Specifically, we'll use FastMNN 🚀
○ Haghverdi, L, Lun, A, Morgan, M, et al. Batch effects in single-cell RNA-sequencing data are corrected

by matching mutual nearest neighbors. (2018) https://doi.org/10.1038/nbt.4091

● Harmony
○ Korsunsky, I, Millard, N, Fan, J, et al. Fast, sensitive and accurate integration of single-cell data with

Harmony. (2019) https://doi.org/10.1038/s41592-019-0619-0

https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/s41592-019-0619-0

Mutual nearest neighbors batch correction

● First, we identify pairs of cells with mutually

similar expression profiles
○ These are our "mutual nearest neighbors"

● Imagine we have 2 batches, each with 3 cell types
○ Red (x) and blue (y) are shared but pink (w) and yellow (z)

are not!

○ Before beginning integration, cosine distances are first

calculated among pairs of cells within each sample
○ This enables expression profile comparisons and sets up

the data for integration

Mutual nearest neighbors batch correction

● Next, compute a batch correction vector for each

MNN pair

● Finally, calculate the weighted average of these

vectors to get cell-specific batch corrections to

perform the final integration

○ Note that w and z don't "look" as

"integrated"! Why?

Some assumptions that MNN makes

● At least one cell population is present in both batches

● The batch effect is almost orthogonal to the biological effects
○ Roughly means, batches and biology are expected to have separate variation

● The batch-effect variation is much smaller than the biological-effect variation
across cell types

Harmony batch correction

● "Soft k-means clustering algorithm"

Input PCA

Before we dive in, let's see how some of this sausage gets made

Individual
samples

Merged
samples

Preprocess
& Import

QC, Filter,
& Normalize

Merge
Dimension
Reduction

Integrate Cluster

Cell type
Differential
Expression

Cell type

Merge

Organize SCE objects into a
named list

Add batch information to
SCEs and format for
merging

Merge compatible SCE
objects together
cbind()

● It's useful to merge SCEs together for many downstream analyses, but this

merging requires some bookkeeping:

○ After merging, how can we still tell which batch (sample) each cell

came from?

■ We need to add this information into SCEs

○ Are SCEs formatted such that R will let us merge them?

■ They need to have compatible column and row names

Let's take a little tour…

We'll use cbind() to merge objects to combine column-wise

Keep cells unique and identifiable by attaching the sample id

➔ Column names (cells) need to be unique and
identifiable

➔ Row names (genes) need to be the same, in
the same order

How do the colData slots get combined?

How do the colData slots get combined?
We get this for free by changing the
SCEs' overall column names!

How do the colData slots get combined?
➔ colData columns need to match, in the same order
➔ Adding a sample indicator will help you a whole lot!

How do the rowData slots get combined?

How do the rowData slots get combined?
➔ rowData column names need to be identifiable…if you

care about them

How do the metadata slots combined?

How do the metadata slots combined?
➔ metadata field names need to be identifiable…if you care about them

One slot left…what about the reducedDims?

● We'll need to recalculate PCA/UMAP on the merged
object taking batches into consideration, so we're
actually going to remove these entirely!

● But, if you wanted to keep them, they also have to be
compatible!

○ Make sure to keep track of the fact that they were run on individual
objects before merging so you don't get mixed up!

How to format your SCE objects before merging

● Keep your samples identifiable
○ Barcodes (column names) should indicate the sample id
○ colData should have a new sample id column
○ rowData column names should indicate the sample id (if you care)
○ metadata field names should indicate the sample id (if you care)

● Make sure your objects are compatible
○ Same genes, in the same order
○ Same colData column names, in the same order
○ Same assays (and reduced dimensions, if you're keeping them)

Some new functions we'll be seeing

● purrr::map() for faster and cleaner iteration ("looping")
○ (and friends! https://purrr.tidyverse.org/reference/map.html)

● glue::glue() for combining strings
○ Bonus! You also get to say glue::glue() all the time

https://purrr.tidyverse.org/reference/map.html

Iterating with purrr

for (diagnosis in histologies){
 print(diagnosis)
}
[1] "SEGA" "PA" "GNG" "PXA"
[1] "DMG" "DIPG"
[1] "MB" "ATRT" "ETMR"

histologies <- list(
 "low-grade gliomas" = c("SEGA", "PA", "GNG", "PXA"),
 "high-grade gliomas" = c("DMG", "DIPG"),
 "embryonal tumors" = c("MB", "ATRT", "ETMR")
)

Iterating with purrr
histologies <- list(
 "low-grade gliomas" = c("SEGA", "PA", "GNG", "PXA"),
 "high-grade gliomas" = c("DMG", "DIPG"),
 "embryonal tumors" = c("MB", "ATRT", "ETMR")
)

diag_lengths <- c()
for (diag in histologies){
 diag_lengths <- c(diag_lengths, length(diag))
}
diag_lengths
[1] 4 2 3

length(histologies)
[1] 3

Iterating with purrr returns a list (with names, if you've
got 'em!)

purrr::map(histologies, length)
$`low-grade gliomas`
[1] 4

$`high-grade gliomas`
[1] 2

$`embryonal tumors`
[1] 3

diag_lengths <- c()
for (diag in histologies){
 diag_lengths <- c(diag_lengths, length(diag))
}
diag_lengths
[1] 4 2 3

Syntax for more complicated operations
histologies |>
 purrr::map(
 # function shortcut

\(diagnoses) {
 length(diagnoses) + 5
}

)
$`low-grade gliomas`
[1] 9

$`high-grade gliomas`
[1] 7

$`embryonal tumors`
[1] 8

When you want to do more than just
call a single function, you can either:

● Define your own function
separately and use that

● Use this handy function shortcut
\(x) { ... code ...}

○ x is your "looping" variable. Try to give
it an informative name (usually not x)

Introducing glue::glue()

org <- "Data Lab"

paste combines multiple strings
paste("Welcome to the", org, "workshop!")
[1] "Welcome to the Data Lab workshop!"

glue uses only 1 set of quotes!
glue::glue("Welcome to the {org} workshop!")
[1] "Welcome to the Data Lab workshop!"

The following slides show some results we obtained benchmarking integration algorithms.

We performed some benchmarking on simulated data
from Luecken et al.
● We evaluated several methods, four of which we'll show here:

○ FastMNN
○ Harmony
○ Seurat using CCA (canonical correlation analysis)

○ Seurat using RPCA (reciprocal PCA)

○ (We'll note that we also looked at scVI, which seemed to work well but is slow on CPU and it's in

Python which is beyond the scope of our workshop!)

● We chose these methods based on performance in Luecken et al. and their
usability

● See https://github.com/AlexsLemonade/sc-data-integration for our
benchmarking code

https://github.com/AlexsLemonade/sc-data-integration

UMAPs colored by Batch

Scenario 1: All cell types are present in all batches

Scenario 1: All cell types are present in all batches

UMAPs colored by Cell Type

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

UMAPs colored by Batch

UMAPs colored by Cell Type

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

