Integrating Different Samples in Single-cell RNA-seq

The Data Lab

Working with multiple samples in scRNA-seq

Integration in scRNA-seq overview

Why integrate samples?

The goal of integration is to mitigate the *batch effects* caused by technical variation across samples, while still preserving biological information.

- Let's call each sample a "batch" of cells
- Cells in a given sample will share some technical variation
- This becomes a problem when we want to jointly consider several samples
 - Cells within a given sample appear more similar than they are, simply because they're from the same sample.
- To compare cells across samples, we need to remove this batch-level technical variation. Then, we can hopefully hone in on the more interesting biological variation .

What can('t) integration do for you?

- Integration is performed on reduced dimension representations (often principal components)
 - o Integration also returns reduced dimension representations for downstream use
 - Some integration methods will "back-calculate" corrected gene expression values, but these aren't as important as you think!
 - For example, we do not use these for differential expression (stay tuned for more!)
 - Recommended reading on when to use, and not to use, corrected expression values:
 http://bioconductor.org/books/3.20/OSCA.multisample/using-corrected-values.html
- Integration allows us to...
 - Jointly visualize cells from multiple datasets
 - Jointly cluster cells from multiple datasets
 - Annotate or identify similar cell types across datasets

What does successful integration look like?

Before integration, the primary "clustering" is by batch

 Orange tends to group with orange, green with green, etc. After successful integration:

- Batches show lots of mixing
- Cell types ("biology") cluster together, and do not show lots of mixing

Successful integration depends on *shared* information across batches.

Example of (what looks like!) successful integration

How to evaluate integration

Compare before and after UMAP vibes

- Before integration, batches (datasets) will mostly cluster together
- After integration...
 - Batches should not group together but should be highly mixed across the UMAP
 - Biologically similar cells (tissue, cell type, disease vs healthy) should group together
- o Usually, when it fails, it fails.
- There are several metrics for evaluating batch correction
 - Luecken et al. (2022) is an excellent reference https://doi.org/10.1038/s41592-019-0619-0
 - Caution: Metrics do <u>not</u> measure "was integration successful," but other proxies which <u>sometimes</u> can help us tell if integration was successful (or at least not unsuccessful)

How I stopped worrying and learned to love (the) UMAPs

- Some examples from Luecken et al. (2022)
 - Luecken, M.D., Büttner, M., Chaichoompu, K. et al. Benchmarking atlas-level data integration in single-cell genomics. (2022). https://doi.org/10.1038/s41592-021-01336-8

- Panels from Figure S13 are shown on the next two slides
 - https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-021-01336-8/MediaObjects/41592 2021 1336 MOESM1 ESM.pdf

Top 4 "best" integration methods

smartseq2

Top 4 "best" integration methods

t_cell

An example of failed integration

Will it integrate?

- Datasets that don't have shared cell types or states will be hard to integrate
 - Patient and xenograft
 - Tumor and normal
 - Data from different tissue types
 - Data from different organisms

 The extent of "overlap" among datasets may also influence which integration method you should use, along with the results themselves

Integration in scRNA-seq overview

- Merge Organize SCE objects into a named list Add batch information to SCEs and format for merging Merge compatible SCE objects together cbind()
- It's useful to *merge SCEs together* for many downstream analyses, but this merging requires some bookkeeping:
 - After merging, how can we still tell which batch (sample) each cell came from?
 - We need to add this information into SCEs
 - Are SCEs formatted such that R will let us merge them?
 - They need to have compatible column and row names

- Dimension reduction techniques like PCA and UMAP start by scaling data to be centered at 0.
- To use PCA/UMAP across samples, we need to calculate the variation jointly

- We can evaluate results by...
 - Comparing before/after UMAPs
 - Calculating metrics that tell us how well cells and batches mix
- If integration is successful, we should see...
 - Batches are well-mixed across the UMAP
 - Cell types (or similar biological grouping, if known) group together separately
 - Remember: Success depends on overlap among batches

Let's have a closer look at methods we'll be using

- MNN: Mutual nearest neighbors
 - Specifically, we'll use FastMNN
 - Haghverdi, L, Lun, A, Morgan, M, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. (2018) https://doi.org/10.1038/nbt.4091

Harmony

 Korsunsky, I, Millard, N, Fan, J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. (2019) https://doi.org/10.1038/s41592-019-0619-0

Mutual nearest neighbors batch correction

- Imagine we have 2 batches, each with 3 cell types
 - Red (x) and blue (y) are shared but pink (w) and yellow (z) are not!
 - Before beginning integration, cosine distances are first calculated among pairs of cells within each sample
 - This enables expression profile comparisons and sets up the data for integration
- First, we identify pairs of cells with mutually similar expression profiles
 - These are our "mutual nearest neighbors"

Mutual nearest neighbors batch correction

 Next, compute a batch correction vector for each MNN pair

- Finally, calculate the weighted average of these vectors to get cell-specific batch corrections to perform the final integration
 - Note that w and z don't "look" as "integrated"! Why?

Some assumptions that MNN makes

- At least one cell population is present in both batches
- The batch effect is almost orthogonal to the biological effects
 - Roughly means, batches and biology are expected to have separate variation

 The batch-effect variation is much smaller than the biological-effect variation across cell types

Harmony batch correction

"Soft k-means clustering algorithm"

Before we dive in, let's see how some of this sausage gets made

- It's useful to *merge SCEs together* for many downstream analyses, but this merging requires some bookkeeping:
 - After merging, how can we still tell which batch (sample) each cell came from?
 - We need to add this information into SCEs
 - Are SCEs formatted such that R will let us merge them?
 - They need to have compatible column and row names

Merging SCE assays

Per-gene (feature) data: Each row is a gene

Per-cell data: Each row is a cell

We performed some benchmarking on simulated data from Luecken *et al.*

- We evaluated several methods, four of which we'll show here:
 - FastMNN
 - Harmony
 - Seurat using CCA (canonical correlation analysis)
 - Seurat using RPCA (reciprocal PCA)
 - (We'll note that we also looked at scVI, which seemed to work well but is slow on CPU and it's in Python which is beyond the scope of our workshop!)
- We chose these methods based on performance in Luecken et al. and their usability
- See https://github.com/AlexsLemonade/sc-data-integration for our benchmarking code

Scenario 1: All cell types are present in all batches

UMAPs colored by Batch

Scenario 1: All cell types are present in all batches

UMAPs colored by Cell Type

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

UMAPs colored by Batch

Scenario 2: Cell types are not present in all batches, and not all batches have cells in common

