Single-cell RNA-seq Data in R:
Import, QC, Normalize, & Visualize

The Data Lab



Before we begin, an RStudio primer/review
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New R features that you will see: new pipe | >

e Inpast workshops, and/or if you have worked with tidyverse packages, you
have probably seen the magr-ittr pipe: %>%
o This allows “chaining” of functions in a readable way:
o Instead of writing:
second_function(first_function(data)),
we can write things like:
data %>% first_function() %>% second_function()

e InRversion 4.1 and later, there is now a built-in version of this operator, | >, so

we no longer have to load the magrittr package

o data |> first_function() |> second_function()
o There are some subtle differences between the two, but not much that comes up in normal use



New R features that you will see: function shortcut \ (x)

e R4.1alsoadded ashortcut for making custom (little) functions
e A“regular” functionis defined with the function () function:

my_func <- function(x){
(x + 1)72
}
e Sometimes, we don’'t want to save our function, just use it quickly in another

function (like apply () or a purrr package function)
o Inpurrr functions, we could use a shortcut:
~(.x + 1)A2
o Now we can use aslightly more verbose but more flexible shortcut anywhere:

\(x) (x + 1)*2  or \(n) {(n + 1)"2}



Single sample scRNA-seq overview
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Mapping & Quantification

o Start with raw FASTQ files & a reference genome/transcriptome

o End with a gene-by-cell count matrix (format varies by tool)

o Cell Ranger is the most common tool

o CITE-seq & cell hashing may require specialized processing
ImporttoR

o  We will be using R/Bioconductor for processing and analysis

o Commands for import vary based on the quantification tool used
and file formats

o Robject wewant toendupwithisaSingleCellExperiment



The SingleCellExperiment class

e During this workshop, we will be working mostly with the Bioconductor suite of R packages
e |ts maindata class for storing single-cell data is the SingleCellExperiment (SCE)
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https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html



https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html

Importing Data

e Single-cell data, after preprocessing/quantification* (or whenever you get it),

may be in a variety of formats:

“Sparse” matrix files (mtx)

HDFS5 files (from CellRanger, often)

LOOM (a special kind of HDF5)

AnnData (another special kind of HDF5 used by many Python tools)
SCE objects (in .rds files)

Seurat objects (in .rds files)

Excel tables

e FEachtype may require a different function for importing to an SCE object...

o DropletUtils::readl®xCounts()
o seurat::as.SingleCellExperiment()
o zellkonverter::readH5AD()
* we are not covering preprocessing here, but ask us about it!

O O O O O O O



Preprocess QC, Filter, Dimension Cluster Find Gene set
& Import & Normalize reduction markers analysis

4 )

QC, Filter, & Normalize
) . »  Celltype
Remove empty droplets
emptyDropsCellRanger ()
L ) e Quality Control and Filtering
) v . o ldentify and remove low-quality cells
Cell-level statistics m Emptydroplets
addPerCellQC() m Damaged/disrupted cells
b 7 d m Poorly sequenced cells (low counts)
Filter disrupted cells e Normalization
miQC o Goal: Mitigate the effects of variation in sequencing depth across
. J cells
) v \ o  Produce alog-scale counts matrix we can use for comparisons
Normalize counts among cells
logNormCounts()
N 9,
E——— |



Initial Quality Control

e After preprocessing, you may have a raw and/or filtered matrix of count data
o  Gene x Droplet (cell) matrix with separate counts for each gene in each droplet

e Primary filtering is to remove “empty” droplets that did not contain a cell
o Methods have changed over time, so different versions of Cell Ranger may have different
contents of the filtered matrix
o If you start with the raw matrix and filter yourself, you will know what was done!
m and maybe can compare across versions, but other caveats for Cell Ranger version changes

exist too!
m theraw matrixis not usually too much larger, because the filtered droplets have mostly
zero counts
-



Filtering damaged/disrupted/dying cells

e Duringlibrary preparation, cells may be broken prematurely

mRNA in the cytoplasm leaks out, giving unreliable (and usually lower) counts

mMRNA in the mitochondria has an extra layer of protection (or 2) and will not leak out as readily
We can use the percentage of mitochondrial mMRNA as an extra QC measure

But what cutoff should we use?

O O O O

e miQC (Hippenetal. 2021) is a method that
combines the total counts and the percentage
of mitochondrial genes to identify

likely-disrupted cells
o https://doi.org/10.1371/journal.pcbi.1009290
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https://doi.org/10.1371/journal.pcbi.1009290

Normalization

e The number of reads per cell often varies

o Thistechnical variation may mask biological variation
o Normalization corrects per-cell counts for read depth

Log counts (unnormalized) PCA scores
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Transcriptome data is highly multidimensional
o Each gene’s expression measurement is a separate dimension
o Expression is often correlated among genes

Goal: amore compact representation of the expression data

with fewer dimensions

o Reduce uninformative and redundant information

o Increase “signal-to-noise” ratio
o Speed up downstream calculations
O

Allow us to make visualizations that capture the important

variation in the data



Dimensionality Reduction Methods

e Featureselection
o Select the most (biologically) variable genes
e Principal Components Analysis
o linear transformation of input data
o usually to tens of dimensions
o removes much of the noise; retains most of the signal
o useful as input to many downstream analyses (clustering, etc.)
e UMAP and/or tSNE
o reducedownto 2 or 3dimensions
o transformation is highly non-linear
o muchslower than PCA
o nice for visualization, but be careful!
m distances between points may be misleading
m similar challenge to squashing a globe onto
a flat map... but more extreme!
-]
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Clustering Cells

Dimensionality reduction often results in visible “clusters”, but how do we define
those?

Many methods!

e hierarchical clustering
o joinclosest points/groups recursively
e k-means clustering

o pick anumber k, then find the “best” way to divide cells into that many groups
o assumes clusters are “spherical”

e graph-based clustering
o Connect cells to other cells with similar expression, then divide up the graph into clusters



Graph-based Clustering

Step 1: Calculate similarity matrix among points e. ‘

S
Step 2: Build a weighted network graph o ’. !
connecting points to their neighbors

Step 3: Divide network graph into
“neighborhoods” based on connection patterns

Many options at each step! The algorithms can
determine how many clusters to assign.

Image from:
https://github.com/benedekrozemberczki/awesome-community-detection



https://github.com/benedekrozemberczki/awesome-community-detection

What do the clusters represent?

e Groups of cells with distinct gene expression patterns

e What does that mean?

o maybe cell types?
o sometimes cell states?
o perhaps perturbations?

e Interpretation will vary based on the sample you are using!
o donot expect asimple mapping of clusters to cell types

e Clusteringis usually somewhat stochastic
o parameter choice and random seeds will affect clusters
o use caution when interpreting clustering results!
o quantitative methods to evaluate cluster quality exist, but can be challenging to interpret



