
Single-cell RNA-seq Data in R:
Import, QC, Normalize, & Visualize

The Data Lab



Before we begin, an RStudio primer/review



New R features that you will see: new pipe |>

● In past workshops, and/or if you have worked with tidyverse packages, you 
have probably seen the magrittr pipe: %>%
○ This allows “chaining” of functions in a readable way:

○ Instead of writing: 

    second_function(first_function(data)), 

we can write things like:

    data %>% first_function() %>% second_function()

● In R version 4.1 and later, there is now a built-in version of this operator, |>,  so 
we no longer have to load the magrittr package
○ data |> first_function() |> second_function()
○ There are some subtle differences between the two, but not much that comes up in normal use



New R features that you will see: function shortcut \(x)

● R 4.1 also added a shortcut for making custom (little) functions
● A “regular” function is defined with the function() function:

 my_func <- function(x){
   (x + 1)^2
 }

● Sometimes, we don’t want to save our function, just use it quickly in another 
function (like apply() or a purrr package function)
○ In purrr functions, we could use a shortcut:

 ~(.x + 1)^2 
○ Now we can use a slightly more verbose but more flexible shortcut anywhere:

  \(x) (x + 1)^2   or  \(n) {(n + 1)^2}
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● Mapping & Quantification
○ Start with raw FASTQ files & a reference genome/transcriptome
○ End with a gene-by-cell count matrix (format varies by tool)
○ Cell Ranger is the most common tool 
○ CITE-seq & cell hashing may require specialized processing

● Import to R
○ We will be using R/Bioconductor for processing and analysis
○ Commands for import vary based on the quantification tool used 

and file formats
○ R object we want to end up with is a SingleCellExperiment



The SingleCellExperiment  class

● During this workshop, we will be working mostly with the Bioconductor suite of R packages

● Its main data class for storing single-cell data is the SingleCellExperiment (SCE)

https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html

https://bioconductor.org/books/release/OSCA.intro/the-singlecellexperiment-class.html


Importing Data

● Single-cell data, after preprocessing/quantification* (or whenever you get it), 
may be in a variety of formats:
○ “Sparse” matrix files (mtx)

○ HDF5 files (from CellRanger, often)

○ LOOM (a special kind of HDF5)

○ AnnData (another special kind of HDF5 used by many Python tools) 

○ SCE objects (in .rds files)

○ Seurat objects (in .rds files)

○ Excel tables

● Each type may require a different function for importing to an SCE object… 
○ DropletUtils::read10xCounts()
○ seurat::as.SingleCellExperiment()
○ zellkonverter::readH5AD()

* we are not covering preprocessing here, but ask us about it!
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● Quality Control and Filtering
○ Identify and remove low-quality cells

■ Empty droplets
■ Damaged/disrupted cells
■ Poorly sequenced cells (low counts)

● Normalization
○ Goal: Mitigate the effects of variation in sequencing depth across 

cells
○ Produce a log-scale counts matrix we can use for comparisons 

among cells

Remove empty droplets
emptyDropsCellRanger()

Normalize counts
logNormCounts()



Initial Quality Control

● After preprocessing, you may have a raw and/or filtered matrix of count data
○  Gene × Droplet (cell) matrix with separate counts for each gene in each droplet

● Primary filtering is to remove “empty” droplets that did not contain a cell
○ Methods have changed over time, so different versions of Cell Ranger may have different 

contents of the filtered matrix

○ If you start with the raw matrix and filter yourself, you will know what was done!

■ and maybe can compare across versions, but other caveats for Cell Ranger version changes 

exist too!

■ the raw matrix is not usually too much larger, because the filtered droplets have mostly 

zero counts



Filtering damaged/disrupted/dying cells

● During library preparation, cells may be broken prematurely
○ mRNA in the cytoplasm leaks out, giving unreliable (and usually lower) counts

○ mRNA in the mitochondria has an extra layer of protection (or 2) and will not leak out as readily

○ We can use the percentage of mitochondrial mRNA as an extra QC measure

○ But what cutoff should we use?

● miQC (Hippen et al. 2021) is a method that 

combines the total counts and the percentage 

of mitochondrial genes to identify 

likely-disrupted cells
○ https://doi.org/10.1371/journal.pcbi.1009290

https://doi.org/10.1371/journal.pcbi.1009290


Normalization

● The number of reads per cell often varies 
○ This technical variation may mask biological variation

○ Normalization corrects per-cell counts for read depth
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● Transcriptome data is highly multidimensional
○ Each gene’s expression measurement is a separate dimension

○ Expression is often correlated among genes

● Goal: a more compact representation of the expression data 

with fewer dimensions 
○ Reduce uninformative and redundant information

○ Increase “signal-to-noise” ratio

○ Speed up downstream calculations

○ Allow us to make visualizations that capture the important 

variation in the data

Identify variable genes

modelGeneVar()



Dimensionality Reduction Methods

● Feature selection
○ Select the most (biologically) variable genes

● Principal Components Analysis
○ linear transformation of input data
○ usually to tens of dimensions
○ removes much of the noise; retains most of the signal
○ useful as input to many downstream analyses (clustering, etc.)

● UMAP and/or tSNE
○ reduce down to 2 or 3 dimensions
○ transformation is highly non-linear
○ much slower than PCA
○ nice for visualization, but be careful!

■ distances between points may be misleading
■ similar challenge to squashing a globe onto 

a flat map… but more extreme!

https://doi.org/10.1038/nbt.4314

https://doi.org/10.1038/nbt.4314


Clustering Cells

Dimensionality reduction often results in visible “clusters”, but how do we define 
those?

Many methods! 

● hierarchical clustering
○ join closest points/groups recursively

● k-means clustering
○ pick a number k, then find the “best” way to divide cells into that many groups

○ assumes clusters are “spherical”

● graph-based clustering
○ Connect cells to other cells with similar expression, then divide up the graph into clusters



Graph-based Clustering

Step 1: Calculate similarity matrix among points

Step 2: Build a weighted network graph 
connecting points to their neighbors

Step 3: Divide network graph into 
“neighborhoods” based on connection patterns

Many options at each step! The algorithms can 
determine how many clusters to assign.

Image from: 
https://github.com/benedekrozemberczki/awesome-community-detection

https://github.com/benedekrozemberczki/awesome-community-detection


What do the clusters represent?

● Groups of cells with distinct gene expression patterns
● What does that mean?

○ maybe cell types?

○ sometimes cell states?

○ perhaps perturbations?

● Interpretation will vary based on the sample you are using!
○ do not expect a simple mapping of clusters to cell types

● Clustering is usually somewhat stochastic
○ parameter choice and random seeds will affect clusters

○ use caution when interpreting clustering results!

○ quantitative methods to evaluate cluster quality exist, but can be challenging to interpret


