
Managing Packages and
Environments

Childhood Cancer Data Lab

Software is called “soft” for a reason

● Software is always changing!
○ New versions can bring new features and fix bugs 🎉
○ But also remove features you relied on 😟
○ Or alter behavior in unexpected ways 😱

● Changes in one piece of software can break other software
○ Sometimes this is intentional! Operating systems are constantly updating to break hacking tools

Changes occur at every level of the computing “stack”

● Individual scripts/analyses
● Packages within R, Python, etc.
● Individual programs (Cell Ranger, Salmon, etc., but also R & Python)
● Operating system
● Hardware

We want to do our best to track and document versions of as many layers as

possible.

Ideally, we would like to freeze versions, so we and anyone else can come back and
know results will be the same!

The “analysis” layer

● We have already talked about tracking your changes with Git and GitHub

○ If you know which commit of your scripts you used to produce an analysis, you can point people
right to that

○ “tags” and “releases” on GitHub can make this easier when you have a particular commit you
want to share (but we won’t be covering that in this workshop)

The package layer

● Research software tools in bioinformatics (and beyond) are often published as
packages for R or Python
○ Examples: Seurat, scanpy, tidyverse, pandas, Bioconductor packages

● This makes them generally easy to install and update as research progresses
○ BUT easy to update means things can change fast

○ New versions may change results, even for existing functions!

■ Newer isn’t always better; sometime you want to stick with the old way

○ Dependencies on other packages may require specific versions of other packages

Documenting package versions in R

● sessionInfo() is your friend
○ or sessioninfo::session_info()

But how do you recreate the same set of packages?

Installing packages based on sessionInfo() output could be very tedious!

Enter renv!

● renv is an R package for tracking, freezing, and sharing R environments, including
all of the package versions that were installed.

● Each project can have its own environment, with its own set of packages
○ Different projects may require different versions of packages

○ renv can help manage these different sets of package versions

● When sharing a project/analysis, using renv allows everyone stay in sync with
same packages and versions

https://rstudio.github.io/renv/index.html

How does renv work?

Rather than using the system R package library, renv creates a library for each
project that R will use when running code for the project ("Project Library")

This renv-created library could be large, so we can’t reasonably share the whole
thing.

Instead, we create a file (renv.lock) that describes the library.

renv uses this file to track all of the packages we are using, and recreate the library
with those packages as needed.

renv initialization

In the console, enter:

renv::init()

Lots of text will scroll by, and your
R session will restart.

That’s it! You are starting to track
your R packages!

What did renv::init() do?

Added an renv.lock file, renv/ folder
and .Rprofile file
(or modified the one you had)

The .Rprofile file is run when R
launches for this project, and it contains a
command to configure renv on launch.

The renv/ folder is where the Project
Library and support files can be found

Newly installed packages for the project
will be stored in this Project Library

The renv.lock file

Taking a snapshot creates or updates the
renv.lock file at the base of your project.

This file records…
● Which packages are installed
● The package versions
● Where the packages came from

Do not edit this file manually!

Updating the renv.lock file
An “renv” menu now
appears in the Packages
pane

Use “Snapshot Library…”
to update the renv.lock
file to the current setup,
e.g. after you update or
install new packages

 Alternatively, in the
console enter:
renv::snapshot()

Restoring a library from an renv.lock file

When working on a new machine, or if someone else updated the renv.lock file,
you may need to update the Project Library

Follow the instructions! Enter renv::restore() in the console (or use the renv
menu "Restore Library" option) to sync your Package Library with the recorded
versions, installing any missing packages.

Which packages are included in renv.lock?

You might have many packages installed, but only use some in a given project.

renv tries to be smart about this, and only includes packages that it finds used

within code in the project folder, or packages that are required by the packages

that are used (so-called dependencies)

Sometimes renv misses a package (particularly for packages with optional dependencies),

and you might need to create a file (we usually call ours dependencies.R) that only

contains lines like:

 library(missing_package)

which will force renv to include that package in the lockfile.

We need more than renv sometimes: enter conda

● As long as we are using R, renv is usually sufficient for package management
○ But lots of tools are written in Python, and other programming languages

○ Many languages have their own package managers: pip for Python, rbenv for Ruby, etc.

○ We also care about versions of binary packages, like salmon or bwa
○ It can be a lot to keep track of!

● conda can handle it all (usually)
○ Started as a Python package manager, but it can be used for just about any command line

software

○ Like renv, you can create separate sets of software with different versions for different projects

○ LOTS of bioinformatics software available through bioconda

○ https://bioconda.github.io/user/install.html

https://bioconda.github.io/user/install.html

Advantages of Conda

● Userspace installation!
○ Everything is installed in your user account, so you don’t need administrative privileges on the

machine

○ This is great for shared servers, like many HPC grids

● Multiple environments
○ You can have different versions of software packages in different environments

■ Leave the OS Python alone but use a newer version which has new features or better

performance (Python 3.11 is a bug speed bump!)

■ Great for testing & legacy support

○ Software with conflicting dependencies can live in different environments

● Well-supported ecosystem, with a huge number of supported packages

Conda terminology

● Environment
○ A set of software and packages, with specific versions for everything that is installed

○ You can have many!

○ Best practice is going to be one environment for each project that you work on

● Package
○ An individual software tool or library

○ Often has dependencies: other packages that are needed for this package to run

● Channel
○ An upstream repository of packages that you can download software from

○ conda-forge and Bioconda are the two we use most often

(the official Anaconda defaults channel used to be on this list, but they may ask for license fees if

you use it)

Creating an environment

To create an environment, minimally:

But this is not usually all you want… we can also specify packages to include,
optionally with versions:

$ conda create --name myenv

$ conda create --name myenv python=3.11 pandas

Activating an environment

● Once you have activated an environment, you can add more packages

● When you are done, you can deactivate the environment

$ conda activate myenv
(myenv) $

(myenv) $ conda install bwa

(myenv) $ conda deactivate
$

* deactivate actually will take you back to the previous active environment, often base

What if you have a lot of packages to include?

Use an environment.yml file with the packages listed in it:

Why do you need env here? Good question.

What is in an environment.yml file?

● name: the environment name

● channels: where the packages come from
● dependencies: what packages are needed

○ And optionally, what version of those packages

$ conda env create --name myenv --file environment.yml

Saving an environment for sharing

● One way: From the environment you are in:

● But this includes everything currently installed with build hashes, and may be
more than you need

● Often more useful:

$ conda export > environment.yml

$ conda export > environment.yml

$ conda export > environment.yml

$ conda export --from-history --no-builds > environment.yml

Conda environment tips

● Keep your base environment lean
○ You might install things you use all the time (like your favorite version of Python)

○ But: having as little as possible in the environment avoids conflicts

● One environment per project is a good starting point
○ You might have more if you need to avoid conflicts, or just want to keep things more modular

● Using Jupyter? Install it in your environment and launch from that activated
environment
○ It is possible to change conda environments from within Jupyter, but launching from the correct

environment is usually easier & ensures all requirements are installed

● Don’t worry about installing the same thing in multiple environments
○ Conda is pretty smart about using links so you won’t have many copies of the same files

Can I interest you in containers?

● renv is pretty useful, but it only really helps if we are using R
(and are careful about updating our R version)

● conda is good too, but sometimes still runs into cross-platform incompatibilities

● Docker and Singularity are another level up
○ Containers include everything from the operating system up

○ Run one OS inside another, with all the things frozen to particular versions

○ Once a container is built, you can distribute that directly (not just the specification file)

○ Cloud platforms love containers…

Locking an environment

● Conda’s dirty secret: different systems (Mac, Linux, Windows) have different
packages and dependencies.
○ An environment file from one may not work on another

○ The more detail that is specified, the less likely it is to work on a different system

○ This… sucks

● Enter conda-lock!
○ conda-lock lets us keep our environment.yml file high-level

○ Specify the tools and optionally which versions we need, but not everything that those

requirements may depend on

○ Let conda-lock record exactly what was used, and what would be needed on each other system

○ Records results in conda-lock.yml

$ conda-lock --file environment.yml

