
Introduction to git
Part II

Branches in git

● Branches are like "repositories within repositories" 🤯
● Useful when you want to make changes (maybe experimental!) but you don't

want to break the rest of your code
○ You can always switch back to a "clean" branch!

● Keep related changes together
○ All commits for a given new analysis or "feature" can be made within the same branch for easier

tracking

○ Helps you to identify which commits are relevant to a given analysis

● If you wreck code in a branch, you've only wrecked that branch! Just delete it!
● Branches provide a great framework for collaboration and team science

Source: https://www.atlassian.com/git/tutorials/using-branches

main branch

A feature branch

A feature branch

https://www.atlassian.com/git/tutorials/using-branches

Modified from https://www.atlassian.com/git/tutorials/using-branches/git-merge

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Let's begin by exploring a real life GitHub repository

https://github.com/alexsLemonade/scpca-nf

…but first, a plug: https://scpca.alexslemonade.org/

https://github.com/alexsLemonade/scpca-nf
https://scpca.alexslemonade.org/

Working with multiple branches

Why and when do we use feature branches?

● The Project Truth lives in main (formerly master)

● Code is developed in different branches, which over time get merged into the main branch

● We want to avoid working directly in the main branch

● All of this helps us modularize project development, keep a clear project history, and avoid conflicts with our

collaborators

We use the term feature branch because each branch should have a specific scope
that is limited to a given feature

When you create a branch, it literally branches off the branch you are in when you
create it. This is called our base branch.

There are several different models for git workflows (stay tuned!), but all make use

of a standard paradigm:

We often work with multiple branches at a time

Tips for success:
● Always know what branch you're working in

● Before creating a branch, be cautious you are creating it from the correct base and that the base is up-to-date

● As you work, aim to keep your feature branch as up-to-date with its base as possible

… and how do you set yourself up for success? git status

Image adapted from Atlassian

You might be working with more than one feature branch, and your teammates are

working in their own branch(es) as well

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Use an informative name for your feature branch

Let's consider a branch with code to add customization options to a histogram

● Bad names
○ feature, options, patch-1

● A better name
○ add-histogram-options

● An even better name
○ <username>/add-histogram-options

● If you want to be very organized
○ <username>/<issue #>-add-histogram-options

Informative names help you stay on track and organize your work, and help your
teammates quickly get a sense of the scope of your work when reviewing your code

Creating and switching between branches

See all local branches with git branch -a

To switch to a different branch…
● git checkout <different-branch>
● git switch <different-branch> (git >= 2.23)

To create a new branch…
● First, make sure you are in right branch you as your base with (surprise!) git status, and switch as

needed!

● git branch <new-branch-name>

More fun with branches

🔥 To simultaneously create and switch into a new branch…
● git checkout -b <new-branch-name>
● git switch -c <new-branch-name> (git >= 2.23)

Change your branch name: git branch -m <updated-branch-name>
⚠ Caution! If you've already pushed your branch, this will not rename the remote branch. You'll also need

something like…

git push origin -u <updated-branch-name> # change your remote target branch
git push origin --delete <original-branch-name> # delete original remote branch

Help GitHub help you: Protect your main branch

Help GitHub help you: Protect your main branch

Merging feature branch changes back into main

Merging itself creates a "merge commit" within the main branch (or, in whichever
branch you are merging into)

If the feature branch is as up-to-date as possible with main, merge conflicts will be
much less likely!

Image from Atlassian

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Keeping your feature branch up-to-date with main

1. Locally, switch back to the main branch git switch main

2. Pull down main branch changes: git pull main
● This will update your local main branch to match the remote main branch

3. Switch back to your feature branch: git switch <feature-branch>

4. Merge in the main branch updates: git merge main
● Note that you specify the name of the branch you want to merge changes from; the branch you

are merging to is your current branch.

● You may enter vi as part of the commit that this command creates! Use :wq to get out.

Some caveats to the previous slide!

We assumed that the base branch is always main, but this is not always the case!
We'll see later a couple scenarios where your base branch is not main, but the same
concepts will apply.

This process will differ a little if you are working in a fork! You first have to keep your
main branch up-to-date with the upstream main branch:

git switch main # switch to your main branch
git merge upstream/main # merge the upstream main into your local main branch
git push # update your fork's remote main

Now, you can sync your feature branch with your main branch

Merging and rebasing can be used to combine branch
histories

Images adapted from Atlassian

 git merge git rebase
 Retains full project history Overwrites project history

Feature branch created here

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Remember Atlassian's golden rule of rebasing

So, before you run git rebase, always ask yourself, “Is anyone else looking at this branch?”

Image & quote from Atlassian

AKA, never* use git rebase on a shared branch
● Public repositories with potential for open contribution

● Private repositories within your organization, even if not meant for external use or consumption

*unless the project maintainers tell you to

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Helpful commands when working in multiple branches

● git stash
○ Use this to save "work in progress" code for later without committing
○ This commands adds changes since the last commit to the stash, which you can "apply" when you

are ready

● git cherry-pick
○ This command will copy (not move!) commit(s) from one branch to another

○ The same commit(s) will now exist in both branches, meaning this command results in duplicate

history

○ But, you can clean up after yourself if you absolutely need to (we'll see an example…now!)

Image from Atlassian

https://www.atlassian.com/git/tutorials/cherry-pick

Demo: Working with multiple branches

