Introductiontogit
Part ||

Childhood Cancer y Lf\nllelﬁge
emo:
Data- Lab Stend @

main branch

Branches in git
Afeature branch
e Branches are like "repositories within repositories" ##
e Useful when you want to make changes (maybe experimental!) but you don't
want to break the rest of your code
o You can always switch back to a "clean" branch!

e Keep related changes together

o All commits for a given new analysis or "feature" can be made within the same branch for easier
tracking
o Helps you to identify which commits are relevant to a given analysis

e |f youwreck codein a branch, you've only wrecked that branch! Just delete it!
e Branches provide a great framework for collaboration and team science

Source: https://www.atlassian.com/git/tutorials/using-branches
e

https://www.atlassian.com/git/tutorials/using-branches

main branch

e

Create a new
branch called
new-feature

Merge the
new-feature
branch back into
the main branch

Time (project progression)

main branch history after merge

DOOOOO®

Modified from https://www.atlassian.com/git/tutorials/using-branches/git-merge

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Let's begin by exploring a real life GitHub repository

https://github.com/alexslemonade/scpca-nf

..butfirst,aplug:https://scpca.alexslemonade.orqg/

https://github.com/alexsLemonade/scpca-nf
https://scpca.alexslemonade.org/

Working with multiple branches

Why and when do we use feature branches?

There are several different models for git workflows (stay tuned!), but all make use
of a standard paradigm:

The Project Truth lives inmain (formerly master)

Code is developed in different branches, which over time get merged into the main branch

We want to avoid working directly in themain branch

All of this helps us modularize project development, keep a clear project history, and avoid conflicts with our
collaborators

We use the term feature branch because each branch should have a specific scope
that is limited to a given feature

When you create a branch, it literally branches off the branch you are in when you
create it. This is called our base branch.

We often work with multiple branches at a time

You might be working with more than one feature branch, and your teammates are
working in their own branch(es) as well

O

i

Image adapted from Atlassian

Tips for success:

e Always know what branch you're working in
e Before creating a branch, be cautious you are creating it from the correct base and that the base is up-to-date

e Asyouwork, aim to keep your feature branch as up-to-date with its base as possible

...and how do you set yourself up for success? git status

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Use an informative name for your feature branch

Informative names help you stay on track and organize your work, and help your
teammates quickly get a sense of the scope of your work when reviewing your code

Let's consider a branch with code to add customization options to a histogram

e Badnames
o feature, options, patch-1

e Abetter name
o add-histogram-options
e Aneven better name
o <username>/add-histogram-options

e If youwant to be very organized
o <username>/<issue #>-add-histogram-options

Creating and switching between branches

See all local branches with git branch -a

To switch to a different branch...
e git checkout <different-branch>
e git switch <different-branch> (git >= 2.23)

To create a new branch...
e First, make sure you are in right branch you as your base with (surprise!) git status, and switch as

needed!
e git branch <new-branch-name>

More fun with branches

@& To simultaneously create and switch into a new branch...
e git checkout -b <new-branch-name>
e git switch -c <new-branch-name> (git >= 2.23)

Change your branchname: git branch -m <updated-branch-name>
)\ Caution! If you've already pushed your branch, this will not rename the remote branch. You'll also need
something like...

git push origin -u <updated-branch-name> # change your remote target branch
git push origin --delete <original-branch-name> # delete original remote branch

Help GitHub help you: Protect your main branch

°
= O jashapiro / rrp-workshop-exercises = Q Type (/] to search 8 ~ + ~||O|Inle 9

<> Code (©) Issues 2 11 Pullrequests ¥ Zenhub (® Actions [Projects [wiki @ Security |~ Insights 3 Settings

@ oener Rulesets [z -]

Access
Ax Collaborators P oAl -

) Moderation options v
(® Protect default branch

3 branch rules - targeting 1 branch
Code and automation

¥ Branches

© Tags

£+ Rules ~
l Rulesets

(>) Actions W

&5 Webhooks
Environments

9 Codespaces

Help GitHub help you: Protect your main branch

Rulesets / Protect default branch

Ruleset Name *

[Protect default branch]

Enforcement status

® Active ~
Bypass list

Exempt roles, teams, and apps from this ruleset by adding them to the bypass list.

Bypass list is empty

Targets

Which branches do you want to make a ruleset for?

Target branches

Branch targeting determines which branches will be protected by this ruleset. Use inclusion patterns to expand the list

of branches under this ruleset. Use exclusion patterns to exclude branches.

Branch targeting criteria

@ Default

Applies to 1 target: main .

+ Add bypass ~

Add target ~

[u]

Rules

Which rules should be applied?
Branch rules

() Restrict creations
Only allow users with bypass permission to create matching refs.

(") Restrict updates
Only allow users with bypass permission to update matching refs.

Restrict deletions
Only allow users with bypass permissions to delete matching refs.

) Require linear history
Prevent merge commits from being pushed to matching refs.

@]

Require deployments to succeed
Choose which environments must be successfully deployed to before refs can be pushed into a ref that match

[) Require signed commits
Commits pushed to matching refs must have verified signatures.

Require a pull request before merging
Require all commits be made to a non-target branch and submitted via a pull request before they can be merg)

Show additional settings v

(") Require status checks to pass
Choose which status checks must pass before the ref is updated. When enabled, commits must first be pushe
where the checks pass.

Block force pushes
Prevent users with push access from force pushing to refs.

(") Require code scanning results
Choose which tools must provide code scanning results before the reference is updated. When configured, co
be enabled and have results for both the commit and the reference being updated.

Revert changes

Require a pull request before merging
Require all commits be made to a non-target branch and submitted via a pull request before they can be merged.

Hide additional settings ~

Required approvals
1~
The number of approving reviews that are required before a pull request can be merged.

() Dismiss stale pull request approvals when new commits are pushed
New, reviewable commits pushed will dismiss previous pull request review approvals.

]

Require review from Code Owners.
Require an approving review in pull requests that modify files that have a designated code owner.

m]

Require approval of the most recent reviewable push
Whether the most recent reviewable push must be approved by someone other than the person who pushed it.

(7] Require conversation resolution before merging
All conversations on code must be resolved before a pull request can be merged.

O

Request pull request review from Copilot
‘Automatically request review from Copilot for new pull requests, if the author has access to Copilot code review.

Allowed merge methods
Merge, Squash, Rebase ~

When merging pull requests, you can allow any combination of merge commits, squashing, o rebasing. At least one option
must be enabled.

Merging feature branch changes back intomain

Merging itself creates a "merge commit" within the main branch (or, in whichever
branch you are merging into)

If the feature branch is as up-to-date as possible with main, merge conflicts will be

much less likely!

/'\

Main tip

Common base

v

New merge
commit

N2

Image from Atlassian

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Keeping your feature branch up-to-date withmain

1. Locally, switch back to the main branchgit switch main

2. Pulldownmain branchchanges:git pull main
e Thiswill update your local main branch to match the remote main branch

3. Switch back to your feature branch: git switch <feature-branch>

4. Mergeinthemain branchupdates:git merge main
e Note that you specify the name of the branch you want to merge changes from; the branch you
are merging to is your current branch.
e You may enter vi as part of the commit that this command creates! Use :wq to get out.

Some caveats to the previous slide!

We assumed that the base branch is always main, but this is not always the case!
We'll see later a couple scenarios where your base branch is not main, but the same
concepts will apply.

This process will differ a little if you are working in a fork! You first have to keep your
main branch up-to-date with the upstream main branch:

git switch main # switch to your main branch
git merge upstream/main # merge the upstream main into your local main branch
git push # update your fork's remote main

Now, you can sync your feature branch with your main branch

Merging and rebasing can be used to combine branch

histories
Main W
Feature branch created here/
git merge git rebase
Retains full project history Overwrites project history

0—07® Camoam
05 o—-o0—" 9,—O—O—f

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Remember Atlassian's golden rule of rebasing

So, before you run git rebase, always ask yourself, “Is anyone else looking at this branch?”

AKA, never*use git rebase onashared branch

e Publicrepositories with potential for open contribution
e Private repositories within your organization, even if not meant for external use or consumption

N2 N2
—O0—0—0—6—0
T
=

branch

Everybody else’s *unless the project maintainers tell you to

. main branch
Main

Image & quote from Atlassian

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Helpful commands when working in multiple branches

e git stash EDDD
= <>

o Usethistosave "work in progress" code for later without committing

o This commands adds changes since the last commit to the stash, which you can "apply" when you
are ready

e git cherry-pick
o This command will copy (not move!) commit(s) from one branch to another

o The same commit(s) will now exist in both branches, meaning this command results in duplicate
history

o But, you can clean up after yourself if you absolutely need to (we'll see an example...now!)

Image from Atlassian

https://www.atlassian.com/git/tutorials/cherry-pick

Demo: Working with multiple branches

