
Git workflows and when you
might encounter them

Objectives

● Describe different approaches to git workflows we use at the Data Lab

● Provide context for why you might pick one approach over another

● Review concrete examples (i.e., public Data Lab repositories)

We’re not going to get into every kind of workflow, of which there are many, or every bit of terminology.

Background

Basic principles that transcend an individual project

● Having remote backup of a code base that’s consistently updated is a good
thing.

● There should be some agreed upon (and documented) set of standards for
what’s allowed into whatever branch we’re treating as the main or default
branch.

● All code benefits from another set of 👀 (for a number of reasons we’ll get into
later in the workshop…).

● Usually whatever we’re contributing to is a living document, scientific project or
product where iterative development can be advantageous.

A bit of technical table-setting

GitHub repositories have different permission levels (directly quoting these docs):

● Read: Recommended for non-code contributors who want to view or discuss your project
● Triage: Recommended for contributors who need to proactively manage issues, discussions, and

pull requests without write access
● Write: Recommended for contributors who actively push to your project
● Maintain: Recommended for project managers who need to manage the repository without

access to sensitive or destructive actions
● Admin: Recommended for people who need full access to the project, including sensitive and

destructive actions like managing security or deleting a repository

Image from: https://octodex.github.com/bouncer/

https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/repository-roles-for-an-organization#repository-roles-for-organizations
https://octodex.github.com/bouncer/

A bit of technical table-setting

● GitHub organization base permissions. Every GitHub organization has the
concept of a base role with some base level of permissions. This impacts the git
workflows you can use. If the organization you belong to sets the base
permissions to write, you’ll have write access to every repository by default and
be able to make branches in your organization’s repositories.

● When forks are necessary. If you have read-only access to a repository, e.g.,
because it’s someone else’s public project, that’s generally when you are going
to use a forks of a repository.

Image from: https://octodex.github.com/bouncer/

https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/setting-base-permissions-for-an-organization#setting-base-permissions
https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/setting-base-permissions-for-an-organization#setting-base-permissions
https://octodex.github.com/bouncer/

Project archetypes

Project archetype: Analysis Project

What is it? A repository where we’re performing research or writing material that may or may
not be publicly available, but we don’t expect people other than our coworkers to “consume” it

Needs:

● Analyses are the correct to the best of our knowledge
● Code can run without error

Don’t need to be overly concerned about releases except when it’s preprint, revision, etc., time

Don’t want people to go a long time without getting feedback

Project archetype: Packages and Workflows

What is it? A repository under consistent development that we expect other people
to use regularly, like an R package or a Nextflow workflow

Same needs as analysis projects, plus an ability to develop new functionality without
releasing something “half-baked” for general usage

Still don’t want people to go a long time without getting feedback

Project archetype: Documentation

What is it? A repository that exclusively contains user-facing documentation about
a product with a code base that’s managed separately

Want to be able develop documentation roughly at the same time that features get
implemented, i.e., because they are fresh in our minds

Need to wait until features are released to publish documentation about them

Again, don’t want people to go a long time without feedback!

Git workflows

Feature branch workflow

Overview: Start with the main branch which is the “official branch” and develop on a
named branch every time you want to add something new.

File a pull request to merge when it’s ready to be added to the official branch.

Images from https://www.atlassian.com/git/tutorials/using-branches

main

feature-branch

https://www.atlassian.com/git/tutorials/using-branches

Feature branch workflow

We’ve found this to be most appropriate for

Analysis Projects

Where it’s most important to keep an up-to-date, official record of the project with
code and documentation reviewed for correctness, etc.

Feature branch example: sc-data-integration

What is it? A repository that contains analyses that support some of the decisions
we make around cell typing and/or integration underlying our Single-cell Pediatric
Cancer Atlas Portal. This code isn’t used in production environments; it’s more for us
to keep track of and surface our work to others.

main

jaclyn-taroni/fix-typo

allyhawkins/combine-cell-assign-markers

Image adapted from https://www.atlassian.com/git/tutorials/using-branches

Everyone on the team can make branches and write to them.

Merging to main requires a pull request.

https://github.com/AlexsLemonade/sc-data-integration/
https://www.atlassian.com/git/tutorials/using-branches

Development and main workflow

Overview: Any new work starts in named branches off of a development branch.
When that work is finished, file a pull request to development. The main branch is
the official or publicly facing release (whatever that means for your project).

main

development

Image adapted from https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

feature-branch

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Development and main workflow

We’ve found this to be most appropriate for

Packages and Workflows Documentation

Where you can continue to add to development internally and merge
development into main when it’s ready for other people

Development and main example: scpca-nf

What is it? A repository that contains the Nextflow pipelines that we use to process
data for the ScPCA Portal.

 main is the default branch that contains the current release version.

 development contains new updates ready in advance of release.

When changes in development merit a new release, a pull request is filed to merge development into
main. We tag a release on main.

https://github.com/AlexsLemonade/scpca-nf/

Development and main example: refinebio-docs

What is it? A repository that contains user-facing documentation for our product
refine.bio.

 development is the default branch that serves as the “working copy” of the docs.

 main contains the current user-facing version of the docs (this is what Read The Docs uses).

When documentation in development are relevant to users, a pull request is filed from development to
main.

https://github.com/alexsLemonade/refinebio-docs
https://readthedocs.org/

Forking workflow

Overview: Contributors work on their own fork, or copy of, the official project repository.
Typically, contributors don’t have write access to the official project repo. This can often be
used in conjunction with any other workflow; it just depends on what branch the pull requests
target.

upstream/main

origin/main

feature-branch

PR to upstream/main

Updating
origin/main

Image adapted from https://www.atlassian.com/git/tutorials/using-branches

https://www.atlassian.com/git/tutorials/using-branches

Forking example: OpenPBTA-analysis

What is it? An analysis project where not all contributors have write access to the
AlexsLemonade project repository.

@AlexsLemonade
main

@contributor
main

feature-branch

https://github.com/AlexsLemonade/OpenPBTA-analysis

A note on pull requests when forking

Allowing edits from maintainers lets people with push access to the upstream
repository commit to the branch in your personal fork

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working
-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/allowing-changes-to-a-pull-request-branch-created-from-a-fork

Git workflows summary

● The Git workflow strategy for a given repository should be dictated by the
permissions levels for contributors and the specific needs of the project.

● A feature branch workflow is useful when your principal aim is to keep an
official record of an ongoing project.

● A development and main workflow can be used when you need to distinguish
what is actively being worked on from what should be publicly facing.

● A forking workflow is typically used when contributors don’t have write access
to the official repository but can be used in conjunction with other models.

