
Pull request responsibilities

Objectives

● Cover some common complaints around code review

● Characterize responsibilities of pull request authors and reviewer

● Illustrate how automation and other GitHub features can support authors and
reviewers

Common complaints about code review

● It takes too long, and long-lived branches result in merge conflicts.

● It’s no fun. It taxes both the authors and the reviewers.

● No clear benefit because reviews are too long and are rushed.

And your team leader and the rest of your team,
with systems and processes, can prevent these
complaints

Source: Wikimedia Commons https://blog.arkency.com/disadvantages-of-pull-requests/

https://blog.arkency.com/disadvantages-of-pull-requests/

Some questions you should ask yourself

● Who is going to review this? A good code review will be confident and requires some

understanding about the project and problem at hand.1 But it can also be an opportunity
to onboard people to the project. Maybe a pull request would benefit from multiple
reviewers playing different roles!

● What are the stakes? A quick, one-off analysis for internal purposes needs to be correct,
but it doesn’t necessarily need to be extensible or efficient.

● When does this need to be completed? If you have a code review policy, you should factor

in that code review takes time, and something isn’t completed until it’s merged

● What is this blocking? Related to the when question – how should review be prioritized?

1https://slack.engineering/how-about-code-reviews/

https://slack.engineering/how-about-code-reviews/

We ask these questions in service of our goal

Generally, leveraging the benefits of code review, such as

● Raising quality

● Sharing knowledge

While making good, sustainable progress

● Working on the right things

● Not grinding to a halt

● Not overburdening our team

Shared responsibilities

Does it accomplish what it needs to
accomplish?

Both the author and the reviewer need to understand the purpose of the pull
request and who the intended audience of the output is.

Addresses: Clear benefit

Does it meet the required standards?

The author’s job is to put forth something they believe is valid (correct, reproducible,
maybe reusable and efficient), and the reviewer’s job is to confirm the work’s
validity.

Addresses: Clear benefit

Are the right people reviewing it?

An author should request a reviewer with enough understanding of the problem and
project that can verify the work’s validity.

Reviewers should be open and honest about the potential limitations of their
reviews.

Addresses: Clear benefit

Don’t be a jerk

Hopefully, this goes without saying. Scientific, collaborative work requires team
psychological safety.

Sharing your knowledge with your teammates, either as an author or as a reviewer,
can be fun!

Addresses: No fun

https://hbr.org/2023/02/what-is-psychological-safety

Instead…

● Assume the other person on your team is doing a good job! Maybe they know
something you don’t.

● Get curious and ask for clarifications.

● Use wording like  “us”, “our”, “we” rather than “you”, “your”, and “mine.”

● Remember to point out what you liked or learned from, too.

From https://slack.engineering/on-empathy-pull-requests/

https://slack.engineering/on-empathy-pull-requests/

Keep things moving

Yes, there are consequences to things hanging out in review too long. Some sense of
urgency is good.

Does everything need to be addressed now, or can you follow up with new issues
and subsequent pull requests instead?

Addresses: Takes too long

Summary: Shared responsibilities

● Code review is a collaborative effort and care must be taken to ensure that it’s a
net positive.

● Pull requests don’t happen in a vacuum, so it’s helpful to consider the “bigger
picture” like what happens when a PR get merged both as an author and a
reviewer.

● A team’s code review practice can benefit from some guidelines. What are some
guidelines you would write?

Author responsibilities

An author is the
person that is directly
responsible and
accountable for an
issue

 A good issue is focused

Roughly, the smallest unit of work something could be broken down into to result in
a single, functional pull request that is manageable for review.

Rules of thumb for focused pull requests

● Represents a single task

● If multiple things are changing, they should be related

● ~400 lines or fewer

Ideas adapted from On Empathy & Pull Requests

https://slack.engineering/on-empathy-pull-requests/

Authors are responsible for more than just code

Or more than just the files changed.

They also have the following responsibilities:

● Introducing or documenting the pull request for the reviewer

● Requesting a reviewer

● Complying with other policies (e.g., connecting to the relevant issue)

C
O

D
E

C
O

M
M

E
N

T

C
U

ST
O

M
S

Before you file

Please look at the Files Change tab on GitHub 👀

Is your pull request focused?

How many lines have changed?

Did some irrelevant files sneak in somehow?

In a later session, we’ll cover some techniques for taming your diffs if your Files Changed are likely to strike
fear into the heart of your reviewer.

Code related responsibilities

Any files that get sent for review should be correct to the best of the author’s
knowledge and meet the team standards, which may include things like:

● Variable or function naming guidance is followed

● File documentation is up to date

Comment related responsibilities

● Provide context. PRs should have informative titles. Authors should explain
what they did and why they ended up with the solution they’re proposing to
merge, as well as link to relevant material that was consulted.

○ Remember, your reviewer doesn’t know about all of the work you’ve put in!

● Structure comments to elicit substantive feedback.

○ In our experience, reviewers have a tendency to want to jump in and comment line-by-line. But

maybe you want comments on the bigger picture. Tell the reviewer what you’d like them to focus

on!

Ideas adapted from On Empathy & Pull Requests and Parker. 2017.

https://slack.engineering/on-empathy-pull-requests/
https://peerj.com/preprints/3210v1/

Pull request templates can
help with comment related
responsibilities!

Customs related responsibilities

Team policy likely dictates that an author is responsible for requesting a reviewer.

Beyond that an author should adhere to all team procedures, policies, or practices
for pull requests, which might include:

● Using specific branch-naming conventions

● Mentioning the relevant GitHub issue in the text of their comment

● Indicating the status of an item in an external project management system

Draft pull requests as a special case

GitHub has functionality that allows you to file a PR but indicate that it is not ready
for review or merging. That’s called a draft pull request!

Image source: GitHub blog

https://github.blog/2019-02-14-introducing-draft-pull-requests/
https://github.blog/wp-content/uploads/2019/02/draft-pull-requests.png?resize=1354%2C780

Draft pull requests as a special case

Draft pull requests allow authors to get high-level feedback on a solution or results
while signalling to others that the code is not “ready for primetime.”

These can come in handy when it turns out an author didn’t fully understand gotchas
associated with an issue or if they get surprising results!

Summary: Author responsibilities

● An author is a person directly responsible and accountable for an issue

or task.

● Author responsibilities may be broader than you think!

○ Code related - Focused, a manageable size and diff

○ Comment related - Sets up the reviewer to have a good experience

○ Customs related - Requests a reviewer, adheres to other team standards and

practices

Systems approaches to facilitating code
review

What do I mean by system approaches?

Anything that goes beyond the scope of an individual pull request (i.e., applies to all
of them) or an individual author’s responsibilities.

Alt title: Solving pull request problems at a deeper level!

Let’s imagine a pull request where we want to make sure:

● All the packages required to run the new code are in the project environment

● The new code can be reused on other data sets

● The approach is methodologically sound

Adapted from Shapiro et al. 2023.

Better done by robots 🤖 Needs people

https://doi.org/10.1016/j.xgen.2023.100340

If we can learn to spot tasks for robots, we
can save reviewers’ energy for the things
that need it

We can also leverage automations to codify and enforce policies.

Image from the Jetsons Fandom

https://thejetsons.fandom.com/wiki/Rosey?file=Rosie.png

Beyond automation, we can use other
features of GitHub to create structure that
appears when people perform the task of
creating a pull request.

A GitHub Actions primer

GitHub Actions (GHA) is a service through GitHub that allows for automation of
workflows. GitHub and third parties create “actions,” which are like template
workflows (e.g., checking out a repository or pushing to Dockerhub).

The nice part about GHA is that it can be triggered on many different GitHub events
like a commit to a pull request targeting a specific branch or when an issue is
created.

https://github.com/features/actions
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

Energy-saving example: Spell check

Using GitHub Actions to check for spelling errors – failing if any errors are detected
– allows pull request authors to correct them before a reviewer looks at it.

Let’s take a look at some real world examples:

training-modules workflow, Rscript, and custom dictionary

refinebio-docs workflow, config, and custom dictionary

https://github.com/AlexsLemonade/training-modules/blob/7b3a6c05a8d7983d890cbf9b2b42f47e3fb79728/.github/workflows/spell-check.yml
https://github.com/AlexsLemonade/training-modules/blob/7b3a6c05a8d7983d890cbf9b2b42f47e3fb79728/scripts/spell-check.R
https://github.com/AlexsLemonade/training-modules/blob/7b3a6c05a8d7983d890cbf9b2b42f47e3fb79728/components/dictionary.txt
https://github.com/AlexsLemonade/refinebio-docs/blob/283bff189eeb49791164f9231a050d67683acf0e/.github/workflows/spell-check.yml
https://github.com/AlexsLemonade/refinebio-docs/blob/283bff189eeb49791164f9231a050d67683acf0e/config/.spellcheck-config.yml
https://github.com/AlexsLemonade/refinebio-docs/blob/283bff189eeb49791164f9231a050d67683acf0e/config/.custom-dictionary.txt

Codifying policies example: Styling

Using GitHub Actions to enforce code style relieves authors’ and reviewers’ burden
of styling code and enforcing style, respectively.

Debate about style can happen once – when selecting or implementing the
workflow – instead of on every pull request.

Let’s take a look at some real world examples:

refinebio-examples workflow

scpcaTools workflow

https://github.com/AlexsLemonade/refinebio-examples/blob/674d8f05f3616efa5828fe6b8a10a3ecf9a4f14d/.github/workflows/style-and-sp-check.yml#L45-L54
https://github.com/AlexsLemonade/scpcaTools/blob/a05b40ce46e14100537b1cf06f96d40792657851/.github/workflows/pr-commands.yaml#L51-L107

Pull request templates can help prompt
authors to satisfy requirements

Whether that’s providing context for the pull request, linking to an issue, or a
checklist of required steps

Real world examples of pull request templates

In the next few slides, we’ll review

● A single, universal PR template from the OpenPBTA-analysis project

● Multiple PR templates (and how to use them) from a repository called
refinebio-examples

https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/alexsLemonade/refinebio-examples

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md

https://github.com/AlexsLemonade/OpenPBTA-analysis
/blob/master/.github/PULL_REQUEST_TEMPLATE.md

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md

https://github.com/AlexsLemonade/OpenPBTA-analysis
/blob/master/.github/PULL_REQUEST_TEMPLATE.md

An HTML comment includes another checklist for data releases

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/.github/PULL_REQUEST_TEMPLATE.md

One weird trick for multiple pull request templates

Summary: Systems approaches to facilitating code
review

● GitHub Actions – or other continuous integration/continuous deployment
(CI/CD) services – can automate some things we’d like to check during a review,
thereby taking them off a human reviewer’s plate.

● Pull request templates support individual authors in meeting their
responsibilities by reminding them of what to include in an initial pull request
comment right when they write it.

Reviewer responsibilities

Reviewers must stand
behind the work they
approve

If you have a code review policy, that means review is part of your job!

The goal is to provide
constructive feedback
so the whole team gets
better

Code review should not be superficial

Reviews should not be overly focused on style or formatting. Ideally, you’ve set up
systems (🤖 👋) to help with the surface-level stuff.

Reviews should focus on the big picture.

It’s easier to live up to this responsibility when pull requests are small enough bites.

From How About Code Reviews? And Pull Requests—The Good, the Bad and Really, Not That Ugly

https://slack.engineering/how-about-code-reviews/
https://productive.io/engineering/pull-requests-the-good-the-bad-and-really-not-that-ugly/

Code review requires understanding

Read the pre-existing code if you need to.

Ask clarifying questions.

Tag in someone with more experience or expertise if you’re not the right reviewer!

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/

Share your knowledge

Maybe you’re very familiar with the foibles of the particular package being used.
Now’s your chance to pass this knowledge on to your coworkers!

Did you consult supplementary material from a paper during your review? Go ahead
and link that in your comments! (Same goes for StackOverflow, blog posts, etc.)

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/

Distinguish between must-haves and nice-to-haves

Or preferences, or matters of opinion, etc.

Make it easy for the author to identify what it will take to get this pull request
merged.

You can lean on the different options for returning a review to help:

● Approval means that the code can be merged.

● Changes requested means that the reviewer that requested the changes must re-review and approve.

● Commenting means the code can be merged if someone else with the appropriate permissions approves.

From Pull Requests—The Good, the Bad and Really, Not That Ugly

https://productive.io/engineering/pull-requests-the-good-the-bad-and-really-not-that-ugly/

Explain how you reviewed

Did you attempt to run the code locally and get an error?

Did you read the code and think through edge cases?

All of this is helpful context for the author!

Pick up the phone if you need to!

If you fundamentally disagree with someone’s approach, (internally) public written
communication might be a tricky way to have a productive conversation about it.

You might want to opt for a synchronous discussion instead and record the
outcomes on the pull request.

From How About Code Reviews?

https://slack.engineering/how-about-code-reviews/

Summary: Reviewer responsibilities

● If you have a code review policy, review is an important part of your role!

● The point of review is constructive feedback, which dictates that review:

○ Shouldn’t be overly focused on superficial things like style

○ Requires understanding of the existing code base or problem at hand

○ Facilitates knowledge sharing

● Practically speaking, it’s helpful if a reviewer:

○ Communicates the distinction between what it will take for them to approve and nice-to-haves

○ Explains what steps they took as part of their review

What policies might
you need to write for
code review?

