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In Brief

The OpenPBTA is a global, collaborative open-science initiative which brought together researchers
and clinicians to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell
lines. Shapiro, et. al create over 40 open-source, scalable modules to perform cancer genomics
analyses and provide a richly-annotated somatic dataset across 58 brain tumor histologies. The
OpenPBTA framework can be used as a model for large-scale data integration to inform basic
research, therapeutic target identi�cation, and clinical translation.
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Highlights

OpenPBTA collaborative analyses establish resource for 1,074 pediatric brain tumors

NGS-based WHO-aligned integrated diagnoses generated for 644 of 1,074 tumors

RNA-Seq analysis infers medulloblastoma subtypes, TP53 status, and telomerase activity

OpenPBTA will accelerate therapeutic translation of genomic insights

Summary

Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in
children, thus we urgently need curative therapeutic strategies for these tumors. To accelerate such
discoveries, the Children’s Brain Tumor Network (CBTN) and Paci�c Pediatric Neuro-Oncology
Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and
sequencing with immediate access to harmonized data. We leverage these data to establish
OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically
characterize 1,074 pediatric brain tumors. Transcriptomic classi�cation reveals universal TP53
dysregulation in mismatch repair-de�cient hypermutant high-grade gliomas and TP53 loss as a
signi�cant marker for poor overall survival in ependymomas and H3 K28-mutant di�use midline
gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board
decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.

Keywords

pediatric cancer, brain tumors, somatic variation, open science, reproducibility, classi�cation, tumor
atlas

Introduction

Pediatric brain and spinal cord tumors are collectively the second most common malignancy in
children after leukemia, representing the leading disease-related cause of death in children1. Five-year
survival rates vary widely across di�erent histologic and molecular classi�cations of brain tumors. For
example, most high-grade gliomas carry a universally fatal prognosis, while children with pilocytic
astrocytoma have an estimated 10-year survival rate of 92%2. Recent estimates suggest that children
and adolescents aged 0-19 with brain tumors in the United States lose an average 47,631 years of
life3.

The low survival rates for some pediatric tumors are multifactorial, explained partly by our lack of
comprehensive understanding of ever-evolving brain tumor molecular subtypes, di�culty drugging
these tumors, and shortage of drugs speci�cally labeled for pediatric malignancies. Historically, fatal
inoperable brain tumors, such as di�use intrinsic pontine gliomas (DIPGs), were not routinely biopsied
due to perceived biopsy risks and the paucity of therapeutic options. Thus, combined with rare
incidences of pediatric tumors in the �rst place, limited availability of tissue for developing patient-
derived cell lines and mouse models has hindered research.

To address these barriers, multiple national and international consortia have collaborated to
uniformly collect clinically-annotated surgical biosamples and associated germline materials through
both observational and interventional clinical trials. The Pediatric Brain Tumor Atlas (PBTA) initiative



established in 2018 by the Children’s Brain Tumor Network (CBTN, cbtn.org)4 and the Paci�c Pediatric
Neuro-Oncology Consortium (PNOC, pnoc.us) built upon 12 years of enrollment, sample collection,
and clinical followup across over 30 institutions. Just as cooperation accelerates specimens and data
sharing, collaboration among computational researchers, bench scientists, clinicians, and pathologists
is critical for rigorous genomic analysis.

Although there has been signi�cant progress elucidating genomic bases of pediatric brain tumor
formation and progression, translating therapeutic agents to phase II or III clinical trials and
subsequent FDA approvals have not kept pace. Within the last 20 years, the FDA has approved only
seven targeted agents for treating pediatric brain tumors5. This is partly due to pharmaceutical
company priorities, posing challenges for researchers to obtain therapeutic agents for pediatric
clinical trials. Critically, since August 2020, an amendment to the Pediatric Research Equity Act called
the “Research to Accelerate Cures and Equity (RACE) for Children Act” mandates that all new adult
oncology drugs also be tested in children when the molecular target exists in a childhood cancer. The
RACE Act, coupled with genomics advances to identify putative molecular targets in pediatric cancers,
will accelerate identi�cation of previously-overlooked but e�ective therapeutic options for pediatric
diseases.

We anticipated that a model of open collaboration would enhance the PBTA’s value and provide a
framework for ongoing analysis of pediatric brain tumor datasets. Leveraging diverse scienti�c and
analytical expertise, we established the OpenPBTA, which employs an open science model with
features such as analytical code review6,7 and continuous integration7,8, thereby ensuring
reproducibility throughout the project’s lifetime. Through OpenPBTA, we present a comprehensive,
collaborative, open genomic analysis of 1,074 tumors and 22 cell lines, comprised of 58 distinct brain
tumor histologies from 943 patients. The data and containerized infrastructure of OpenPBTA have
already supported discovery and translational research studies9–12, are actively integrated into PNOC
molecular tumor board decision-making, and have provided a foundational layer for the Childhood
Cancer Data Initiative’s (CCDI) recently-established pediatric Molecular Targets Platform
(https://moleculartargets.ccdi.cancer.gov/). We anticipate OpenPBTA will continue to be invaluable to
the pediatric oncology community.

Results

Crowd-sourced Somatic Analyses to Create an Open Pediatric Brain
Tumor Atlas

We previously performed whole genome sequencing (WGS), whole exome sequencing (WXS), and RNA
sequencing (RNA-Seq) on matched tumor/normal tissues and selected cell lines13 from 943 patients
from the Pediatric Brain Tumor Atlas (PBTA), consisting of 911 patients from the CBTN4 and 32
patients from PNOC10,14 (Figure 1A) across various histologies phrases of therapy (Figure 1B). We
harnessed and extended the benchmarking e�orts of the Gabriella Miller Kids First Data Resource
Center to develop robust and reproducible data analysis work�ows within the CAVATICA platform for
comprehensive somatic analyses (Figure S1) and STAR Methods) of the PBTA.

A key innovative feature of OpenPBTA is its open contribution framework used for analytical code and
manuscript writing. We created a public Github analysis repository
(https://github.com/AlexsLemonade/OpenPBTA-analysis) to hold all analysis code downstream of Kids
First work�ows and a GitHub manuscript repository (https://github.com/AlexsLemonade/OpenPBTA-
manuscript) with Manubot15 integration to enable real-time manuscript creation. As all analyses and
manuscript writing were conducted in public repositories, any researcher in the world could
contribute to OpenPBTA following the process outlined in Figure 1C. First, a potential contributor
proposed an analysis by �ling an issue in the GitHub analysis repository. Next, project organizers or

https://moleculartargets.ccdi.cancer.gov/
https://cbtn.org/
https://pnoc.us/
https://kidsfirstdrc.org/
https://www.cavatica.org/
https://github.com/AlexsLemonade/OpenPBTA-analysis
https://github.com/AlexsLemonade/OpenPBTA-manuscript


other contributors with expertise provided feedback about the proposed analysis (Figure 1C). The
contributor formally requested to include their analytical code and results – written in their own copy
(fork) of repository – in the OpenPBTA analysis repository by �ling a GitHub pull request (PR). All PRs
underwent peer review to ensure scienti�c accuracy, maintainability, and readability of code and
documentation (Figure 1C-D).

Beyond peer review, we implemented additional checks to ensure consistent results for all
collaborators over time (Figure 1D). To provide a consistent software development environment, we
created a monolithic image with all OpenPBTA dependencies using Docker®16 and the Rocker
project17. We used the continuous integration (CI) service CircleCI® to run analytical code in PRs on a
test dataset before formal code review, allowing us to detect code bugs or sensitivity to data release
changes.

We followed a similar process in our Manubot-powered15 repository for proposed manuscript
additions (Figure 1C); peer reviewers ensured clarity and scienti�c accuracy, and Manubot performed
spell-checking.



Figure 1:  Overview of the OpenPBTA Project. A, CBTN and PNOC collected tumors from 943 patients. 22 tumor cell
lines were created, and over 2000 specimens were sequenced (N = 1035 RNA-Seq, N = 940 WGS, and N = 32 WXS or
targeted panel). The Kids First Data Resource Center Data harmonized the data using Amazon S3 through CAVATICA.
Panel created with BioRender.com. B, Number of biospecimens across phases of therapy, with one broad histology per
panel. Each bar denotes a cancer group. (Abbreviations: GNG = ganglioglioma, Other LGG = other low-grade glioma, PA =
pilocytic astrocytoma, PXA = pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell astrocytoma, DIPG =
di�use intrinsic pontine glioma, DMG = di�use midline glioma, Other HGG = other high-grade glioma, ATRT = atypical
teratoid rhabdoid tumor, MB = medulloblastoma, Other ET = other embryonal tumor, EPN = ependymoma, PNF =
plexiform neuro�broma, DNET = dysembryoplastic neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing
sarcoma, CPP = choroid plexus papilloma). C, Overview of the open analysis and manuscript contribution models.
Contributors proposed analyses, implemented it in their fork, and �led a pull request (PR) with proposed changes. PRs
underwent review for scienti�c rigor and accuracy. Container and continuous integration technologies ensured that all
software dependencies were included and code was not sensitive to underlying data changes. Finally, a contributor �led
a PR documenting their methods and results to the Manubot-powered manuscript repository for review. D, A potential
path for an analytical PR. Arrows indicate revisions.

file:///converted/biorender.com


Molecular Subtyping of OpenPBTA CNS Tumors

Since 2000, neuro-oncology experts and the WHO have collaborated to iteratively rede�ne central
nervous system (CNS) tumor classi�cations18,19. In 201620, molecular subtypes driven by genetic
alterations were integrated into these classi�cations. Since CBTN specimen collection began in 2011,
most tumors lacked molecular subtype information when tissue was collected. Moreover, PBTA does
not yet feature methylation arrays which are increasingly used to inform molecular subtyping and
cancer diagnosis. Therefore, we created analysis modules to systematically consider key genomic
features of tumors described by the WHO in 2016 or Ryall and colleagues21. Coupled with clinician
and pathologist review, we generated high-con�dence research-grade integrated diagnoses for 60%
(644/1074) of tumors (Table S1) without methylation data, a major innovation of this project. We then
aligned OpenPBTA specimen diagnoses with WHO classi�cations (e.g., tumors formerly ascribed
primitive neuro-ectodermal tumor [PNET] diagnoses), discovered rarer tumor entities (e.g., H3-mutant
ependymoma, meningioma with YAP1::FAM118B fusion), as well as identi�ed and corrected data entry
errors (e.g., an embryonal tumor with multilayer rosettes (ETMR) incorrectly entered as a
medulloblastoma) and histologically mis-identi�ed specimens (e.g., Ewing sarcoma sample labeled as
a craniopharyngioma). Uniquely, we used transcriptomic classi�cation to subtype 122
medulloblastomas into SHH, WNT, Group 3, or Group 4 with MedulloClassifier 22 and MM2S 23,
with 95% (41/43) and 91% (39/43) accuracy, respectively.

In total, we subtyped low-grade gliomas (LGGs) (N = 290), HGGs (N = 141), embryonal tumors (N =
126), ependymomas (N = 33), tumors of sellar region (N = 27), mesenchymal non-meningothelial
tumors (N = 11), glialneuronal tumors (N = 10), and chordomas (N = 6), where Ns represent unique
tumors (Table 1). For detailed methods, see STAR Methods and Figure S1.

Table 1:  Molecular subtypes generated through the OpenPBTA project. Broad tumor histologies, molecular
subtypes generated, and number of patients and tumors subtyped within OpenPBTA.

Broad histology group OpenPBTA molecular subtype Patients Tumo
rs

Chordoma CHDM, conventional 2 2

Chordoma CHDM, poorly di�erentiated 2 4

Embryonal tumor CNS Embryonal, NOS 13 13

Embryonal tumor CNS HGNET-MN1 1 1

Embryonal tumor CNS NB-FOXR2 2 3

Embryonal tumor ETMR, C19MC-altered 5 5

Embryonal tumor ETMR, NOS 1 1

Embryonal tumor MB, Group3 14 14

Embryonal tumor MB, Group4 48 49

Embryonal tumor MB, SHH 24 30

Embryonal tumor MB, WNT 10 10

Ependymoma EPN, H3 K28 1 1

Ependymoma EPN, ST RELA 25 28

Ependymoma EPN, ST YAP1 3 4

High-grade glioma DMG, H3 K28 18 24

High-grade glioma DMG, H3 K28, TP53 activated 10 13



Broad histology group OpenPBTA molecular subtype Patients Tumo
rs

High-grade glioma DMG, H3 K28, TP53 loss 30 40

High-grade glioma HGG, H3 G35 3 3

High-grade glioma HGG, H3 G35, TP53 loss 1 1

High-grade glioma HGG, H3 wildtype 26 31

High-grade glioma HGG, H3 wildtype, TP53 activated 5 5

High-grade glioma HGG, H3 wildtype, TP53 loss 14 21

High-grade glioma HGG, IDH, TP53 activated 1 2

High-grade glioma HGG, IDH, TP53 loss 1 1

Low-grade glioma GNG, BRAF V600E 13 13

Low-grade glioma GNG, BRAF V600E, CDKN2A/B 1 1

Low-grade glioma GNG, FGFR 1 1

Low-grade glioma GNG, H3 1 1

Low-grade glioma GNG, IDH 1 2

Low-grade glioma GNG, KIAA1549-BRAF 5 5

Low-grade glioma GNG, MYB/MYBL1 1 1

Low-grade glioma GNG, NF1-germline 1 1

Low-grade glioma GNG, NF1-somatic, BRAF V600E 1 1

Low-grade glioma GNG, other MAPK 4 4

Low-grade glioma GNG, other MAPK, IDH 1 1

Low-grade glioma GNG, RTK 2 3

Low-grade glioma GNG, wildtype 14 14

Low-grade glioma LGG, BRAF V600E 25 27

Low-grade glioma LGG, BRAF V600E, CDKN2A/B 5 5

Low-grade glioma LGG, FGFR 8 8

Low-grade glioma LGG, IDH 3 3

Low-grade glioma LGG, KIAA1549-BRAF 106 113

Low-grade glioma LGG, KIAA1549-BRAF, NF1-germline 1 1

Low-grade glioma LGG, KIAA1549-BRAF, other MAPK 1 1

Low-grade glioma LGG, MYB/MYBL1 2 2

Low-grade glioma LGG, NF1-germline 6 6

Low-grade glioma LGG, NF1-germline, CDKN2A/B 1 1

Low-grade glioma LGG, NF1-germline, FGFR 1 2

Low-grade glioma LGG, NF1-somatic 2 2

Low-grade glioma LGG, NF1-somatic, FGFR 1 1

Low-grade glioma LGG, NF1-somatic, NF1-germline, CDKN2A/B 1 1

Low-grade glioma LGG, other MAPK 11 12



Broad histology group OpenPBTA molecular subtype Patients Tumo
rs

Low-grade glioma LGG, RTK 8 10

Low-grade glioma LGG, RTK, CDKN2A/B 1 1

Low-grade glioma LGG, wildtype 33 34

Low-grade glioma SEGA, RTK 1 1

Low-grade glioma SEGA, wildtype 10 11

Mesenchymal non-meningothelial tumor EWS 9 11

Neuronal and mixed neuronal-glial tumor CNC 2 2

Neuronal and mixed neuronal-glial tumor EVN 1 1

Neuronal and mixed neuronal-glial tumor GNT, BRAF V600E 1 1

Neuronal and mixed neuronal-glial tumor GNT, KIAA1549-BRAF 1 2

Neuronal and mixed neuronal-glial tumor GNT, other MAPK 1 1

Neuronal and mixed neuronal-glial tumor GNT, other MAPK, FGFR 1 1

Neuronal and mixed neuronal-glial tumor GNT, RTK 1 2

Tumor of sellar region CRANIO, ADAM 27 27

Total 577 644

Somatic Mutational Landscape of Pediatric Brain Tumors

We performed a comprehensive genomic analysis of somatic SNVs, CNVs, SVs, and fusions across all
1,074 PBTA tumors (N = 1,019 RNA-Seq, N = 918 WGS, N = 32 WXS/Panel) and 22 cell lines (N = 16 RNA-
Seq, N = 22 WGS), from 943 patients, 833 with paired normal specimens (N = 801 WGS, N = 32
WXS/Panel). Tumor purity across PBTA samples was high (median 76%), though we observed some
cancer groups with lower purity, including SEGA, PXA, and teratoma (Figure S3A). Unless otherwise
noted, each analysis was performed for diagnostic tumors using one tumor per patient.

SNV consensus calling (Figure S1 and Figure S2A-G) revealed, as expected, lower tumor mutation
burden (TMB) (Figure S2H) in pediatric tumors compared to adult brain tumors from The Cancer
Genome Atlas (TCGA) (Figure S2I), with hypermutant (> 10 Mut/Mb) and ultra-hypermutant (> 100
Mut/Mb) tumors24 only found within HGGs and embryonal tumors. Figure 2 and Figure S3B depict
oncoprints recapitulating known histology-speci�c driver genes in primary tumors across OpenPBTA
histologies, and Table S2 summarizes all detected alterations across cancer groups.

Low-grade gliomas

As expected, most (62%, 140/226) LGGs harbored a somatic alteration in BRAF, with canonical
BRAF::KIAA1549 fusions as the major oncogenic driver25 (Figure 2A). We observed additional
mutations in FGFR1 (2%), PIK3CA (2%), KRAS (2%), TP53 (1%), and ATRX (1%) and fusions in NTRK2 (2%),
RAF1 (2%), MYB (1%), QKI (1%), ROS1 (1%), and FGFR2 (1%), concordant with previous studies reporting
near-universal upregulation of the RAS/MAPK pathway in LGGs21,25. Indeed, gene set variant analysis
(GSVA) revealed signi�cant upregulation (ANOVA Bonferroni-corrected p < 0.01) of the KRAS signaling
pathway in LGGs (Figure 5B).

Embryonal tumors



Most (N = 95) embryonal tumors were medulloblastomas from four characterized molecular subtypes
(WNT, SHH, Group3, and Group 4; see Molecular Subtyping of CNS Tumors), as identi�ed by
subtype-speci�c canonical mutations (Figure 2B). We detected canonical SMARCB1/SMARCA4
deletions or inactivating mutations in atypical teratoid rhabdoid tumors (ATRTs; Table S2) and C19MC
ampli�cation in ETMRs (displayed within “Other embryonal tumors” in Figure 2B)26–29.

High-grade gliomas

Across HGGs, TP53 (57%, 36/63) and H3F3A (54%, 34/63) were both most mutated and co-occurring
genes (Figure 2A and C), followed by frequent mutations in ATRX (29%, 18/63) which is commonly
mutated in gliomas30. We observed recurrent ampli�cations and fusions in EGFR, MET, PDGFRA, and
KIT, highlighting that these tumors leverage multiple oncogenic mechanisms to activate tyrosine
kinases, as previously reported14,31,32. GSVA showed upregulation (ANOVA Bonferroni-corrected p <
0.01) of DNA repair, G2M checkpoint, and MYC pathways as well as downregulation of the TP53
pathway (Figure 5B). The two ultra-hypermutated tumors (> 100 Mutations/Mb) were from patients
with mismatch repair de�ciency syndrome13.

Other CNS tumors

We observed that 25% (15/60) of ependymomas were C11orf95::RELA (now, ZFTA::RELA) fusion-
positive33 and 68% (21/31) of craniopharyngiomas contained CTNNB1 mutations (Figure 2D). We
observed somatic mutations or fusions in NF2 in 41% (7/17) of meningiomas, 5% (3/60) of
ependymomas, and 25% (3/12) of schwannomas, as well as rare fusions in ERBB4, YAP1, and/or QKI in
10% (6/60) of ependymomas. DNETs harbored alterations in MAPK/PI3K pathway genes, as was
previously reported34, including FGFR1 (21%, 4/19), PDGFRA (10%, 2/19), and BRAF (5%, 1/19).



Figure 2:  Mutational landscape of PBTA tumors. Frequencies of canonical somatic gene mutations, CNVs, fusions,
and TMB (top bar plot) for the top mutated genes across primary tumors within the OpenPBTA dataset. A, LGGs (N =
226): pilocytic astrocytoma (N = 104), other LGG (N = 68), ganglioglioma (N = 35), pleomorphic xanthoastrocytoma (N =
9), subependymal giant cell astrocytoma (N = 10). B, Embryonal tumors (N = 129): medulloblastoma (N = 95), atypical
teratoid rhabdoid tumor (N = 24), other embryonal tumor (N = 10). C, HGGs (N = 63): di�use midline glioma (N = 36) and
other HGG (N = 27). D, Other CNS tumors (N = 153): ependymoma (N = 60), craniopharyngioma (N = 31), meningioma (N
= 17), dysembryoplastic neuroepithelial tumor (N = 19), Ewing sarcoma (N = 7), schwannoma (N = 12), and neuro�broma
plexiform (N = 7). Rare CNS tumors are displayed in Figure S3B. Histology ( Cancer Group ) and sex annotations are
displayed under each plot. Only tumors with mutations in the listed genes are shown. Multiple CNVs are denoted as a
complex event. N denotes the number of unique tumors (one tumor per patient).

Mutational co-occurrence, CNV, and signatures highlight key
oncogenic drivers

We analyzed mutational co-occurrence across the OpenPBTA, using a single tumor from each patient
(N = 668) with WGS. The top 50 mutated genes (see STAR Methods for details) in primary tumors are
shown in Figure 3 by tumor type (A, bar plots), with co-occurrence scores illustrated in the heatmap
(B). As expected, TP53 was the most frequently mutated gene across the OpenPBTA (8.7%, 58/668),
signi�cantly co-occurring with H3F3A (OR = 30.05, 95% CI: 14.5 - 62.3, q = 2.34e-16), ATRX (OR = 23.3,
95% CI: 9.6 - 56.3, q = 8.72e-9), NF1 (OR = 8.26, 95% CI: 3.5 - 19.4, q = 7.40e-5), and EGFR (OR = 17.5,
95% CI: 4.8 - 63.9, q = 2e-4), with all of these driven by HGGs and consistent with previous
reports31,35,36.

In embryonal tumors, CTNNB1 mutations signi�cantly co-occurred with TP53 mutations (OR = 43.6
95% CI: 7.1 - 265.8, q = 1.52e-3) as well as with DDX3X mutations (OR = 21.4, 95% CI: 4.7 - 97.9, q =
4.15e-3), events driven by medulloblastomas as previously reported37,38. FGFR1 and PIK3CA
mutations signi�cantly co-occurred in LGGs (OR = 77.25, 95% CI: 10.0 - 596.8, q = 3.12e-3), consistent
with previous �ndings38,39. Of HGG tumors with TP53 or PPM1D mutations, 53/55 (96.3%) had
mutations in only one of these genes (OR = 0.17, 95% CI: 0.04 - 0.89, q = 0.056), recapitulating previous
observations that these mutations are usually mutually exclusive in HGGs40.

CNV and SV analyses revealed that HGG, DMG, and medulloblastoma tumors had the most unstable
genomes, while craniopharyngiomas and schwannomas generally lacked somatic CNV (Figure S3C).
These CNV patterns largely aligned with our TMB estimates (Figure S2H). SV and CNV breakpoint
densities were signi�cantly correlated (linear regression p = 1.05e-38; Figure 3C), and as expected, the
number of chromothripsis regions called increased with breakpoint density (Figure S3D-E). We
identi�ed chromothripsis events in 31% (N = 12/39) of DMGs and in 44% (N = 21/48) of other HGGs
(Figure 3D), and found evidence of chromothripsis in over 15% of sarcomas, PXAs, metastatic
secondary tumors, chordomas, glial-neuronal tumors, germinomas, meningiomas, ependymomas,
medulloblastomas, ATRTs, and other embryonal tumors.

We assessed the contributions of eight adult CNS-speci�c mutational signatures from the RefSig
database41 across tumors (Figure 3E and Figure S4A). Signature 1, which re�ects normal
spontaneous deamination of 5-methylcytosine, predominated in stage 0 and/or 1 tumors
characterized by low TMBs (Figure S2H) such as pilocytic astrocytomas, gangliogliomas, other LGGs,
and craniopharyngiomas (Figure S4A). Signature 1 weights were generally higher in tumors sampled
at diagnosis (pre-treatment) compared to tumors from later phases of therapy (Figure S4B). This
trend may have emerged from therapy-induced mutations that produced additional signatures (e.g.,
temozolomide treatment has been suggested to drive Signature 1142), subclonal expansion, and/or
acquisition of additional driver mutations during tumor progression, leading to detection of additional
signatures. We observed the CNS-speci�c signature N6 in nearly all tumors. Signature 18 drivers
(TP53, APC, NOTCH1; found at
https://signal.mutationalsignatures.com/explore/referenceCancerSignature/31/drivers) are also



canonical medulloblastoma drivers, and indeed, Signature 18 had the highest signature weight in
medulloblastomas. Finally, signatures 3, 8, 18, and MMR2 were prevalent in HGGs, including DMGs.

Figure 3:  Mutational co-occurrence and signatures highlight key oncogenic drivers. A, Nonsynonymous mutations
for 50 most commonly-mutated genes across all histologies. “Other” denotes a histology with <10 tumors. B, Co-
occurrence and mutual exclusivity of mutated genes. The co-occurrence score is de�ned as  where  is
Fisher’s exact test and  is 1 when mutations co-occur more often than expected or -1 when exclusivity is more
common. C, Number of SV and CNV breaks are signi�cantly correlated (Adjusted R = 0.443, p = 1.05e-38). D,
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Chromothripsis frequency across cancer groups with N >= 3 tumors. E, Sina plots of RefSig signature weights for
signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and Other across cancer groups. Boxplot represents 5% (lower whisker), 25%
(lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.

Transcriptomic Landscape of Pediatric Brain Tumors

Most RNA-Seq samples in the PBTA were prepared with ribosomal RNA depletion followed by
stranded sequencing (N = 977), while remaining samples were prepared with poly-A selection (N = 58).
Since batch correction was not feasible (see Limitations of the Study and Figure S7A), the following
transcriptomic analyses considered only stranded samples.

Prediction of TP53 oncogenicity and telomerase activity

We applied a TCGA-trained classi�er43 to calculate a TP53 score, a proxy for TP53 gene or pathway
dysregulation, and subsequently infer tumor TP53 inactivation status. We identi�ed “true positive”
TP53 alterations from high-con�dence SNVs, CNVs, SVs, and fusions in TP53, annotating tumors as
“activated” if they harbored one of p.R273C or p.R248W gain-of-function mutations44, or “lost” if 1) the
patient had a Li Fraumeni Syndrome (LFS) predisposition diagnosis, 2) the tumor harbored a known
hotspot mutation, or 3) the tumor contained two hits (e.g. both SNV and CNV), suggesting both alleles
were a�ected. If the TP53 mutation did not reside within the DNA-binding domain or no alterations in
TP53 were detected, we annotated the tumor as “other,” indicating an unknown TP53 alteration
status. The classi�er achieved a high accuracy (AUROC = 0.86) for rRNA-depleted, stranded tumors,
but it did not perform as well on the poly-A tumors in this cohort (AUROC = 0.62; Figure S5A).

We observed that “activated” and “lost” tumors had similar TP53 scores (Figure 4B, Wilcoxon p = 0.92),
contrasting our expectation that “lost” tumors would have higher TP53 scores. This di�erence
suggests that classi�er scores > 0.5 may actually represent an oncogenic, or altered, TP53 phenotype
rather than solely TP53 inactivation, as interpreted previously43. However, “activated” tumors showed
higher TP53 expression compared to those with TP53 “loss” mutations (Wilcoxon p = 0.006, Figure
4C). DMGs, medulloblastomas, HGGs, DNETs, ependymomas, and craniopharyngiomas, all known to
harbor TP53 mutations, had the highest median TP53 scores (Figure 4D). By contrast, gangliogliomas,
LGGs, meningiomas, and schwannomas had the lowest median scores.

We hypothesized that tumors (N = 10) from patients with LFS (N = 8) would have higher TP53 scores,
which we indeed observed for 8/10 tumors (Table S3). Although two tumors had low TP53 scores
( BS_DEHJF4C7  at 0.09 and BS_ZD5HN296  at 0.28), pathology reports con�rmed that both patients
were diagnosed with LFS and harbored a TP53 pathogenic germline variant. These two LFS tumors
also had low tumor purity (16% and 37%, respectively), suggesting that accurate classi�cation may
require a certain level of tumor content. We suggest this classi�er could be generally applied to infer
TP53 function in the absence of a predicted oncogenic TP53 alteration or DNA sequencing.

We used gene expression data to predict telomerase activity using EXpression-based Telomerase
ENzymatic activity Detection ( EXTEND )45 as a surrogate measure of malignant potential45,46, where
higher EXTEND  scores indicate higher telomerase activity. Aggressive tumors such as DMGs, other
HGGs, and MB had high EXTEND  scores (Figure 4D), and low-grade lesions such as schwannomas,
GNGs, DNETs, and other LGGs had among the lowest scores (Table S3), supporting previous reports
that aggressive tumor phenotypes have higher telomerase activity47–50. While EXTEND  scores were
not signi�cantly higher in tumors with TERT promoter (TERTp) mutations (N = 6; Wilcoxon p-value =
0.1196), scores were signi�cantly correlated with TERC (R = 0.619, p < 0.01) and TERT (R = 0.491, p <
0.01) log2 FPKM expression values (Figure S5B-C). Since catalytically-active telomerase requires full-
length TERT, TERC, and certain accessory proteins51, we expect that EXTEND  scores may not be
exclusively correlated with TERT alterations and expression.



Hypermutant tumors share mutational signatures and have dysregulated
TP53

We investigated the mutational signature pro�les of hypermutant (TMB > 10 Mut/Mb; N = 3) and ultra-
hypermutant (TMB > 100 Mut/Mb; N = 4) tumors and/or derived cell lines from six patients in
OpenPBTA (Figure 4E). Five tumors were HGGs and one was a brain metastasis of a MYCN non-
ampli�ed neuroblastoma tumor. Signature 11, which is associated with exposure to temozolomide
plus MGMT promoter and/or mismatch repair de�ciency52, was indeed present in tumors with
previous exposure to the drug (Table 2). We detected the MMR2 signature in tumors of four patients
(PT_0SPKM4S8, PT_3CHB9PK5, PT_JNEV57VK, and PT_VTM2STE3) diagnosed with either constitutional
mismatch repair de�ciency (CMMRD) or Lynch syndrome (Table 2), genetic predisposition syndromes
caused by a variant in a mismatch repair gene such as PMS2, MLH1, MSH2, MSH6, or others53. Three
of these patients harbored pathogenic germline variants in one of the aforementioned genes. While
we did not detect a known pathogenic variant in the germline of PT_VTM2STE3, this patient’s
pathology report contained a self-reported PMS2 variant, and we indeed found 19 intronic variants of
unknown signi�cance (VUS) in their PMS2. This is not surprising since an estimated 49% of germline
PMS2 variants in patients with CMMRD and/or Lynch syndrome are VUS53. Interestingly, while the cell
line derived from patient PT_VTM2STE3’s tumor at progression was not hypermutated (TMB = 5.7
Mut/Mb), it only contained the MMR2 signature, suggesting selective pressure to maintain a mismatch
repair (MMR) phenotype in vitro. Only one of the two cell lines derived from patient PT_JNEV57VK ’s
progressive tumor was hypermutated (TMB = 35.9 Mut/Mb). The hypermutated cell line was strongly
weighted towards signature 11, while the non-hypermutated cell line showed several lesser signature
weights (1, 11, 18, 19, MMR2; Table S2). This mutational process plasticity highlights the importance of
careful genomic characterization and model selection for preclinical studies.

Signature 18, which has been associated with high genomic instability and can induce a hypermutator
phenotype41, was uniformly represented among hypermutant solid tumors. Additionally, all
hypermutant HGG tumors or cell lines had dysfunctional TP53 (Table 2), consistent with previous
�ndings that tumors with high genomic instability signatures require TP53 dysregulation41. With one
exception, hypermutant and ultra-hypermutant tumors had high TP53 scores (> 0.5) and telomerase
activity. Interestingly, none of the hypermutant tumors showed evidence of signature 3 (present in
homologous recombination de�cient tumors), signature 8 (arises from double nucleotide
substitutions/unknown etiology), or signature N6 (a universal CNS tumor signature). The mutual
exclusivity of signatures 3 and MMR2 corroborates previous suggestions that tumors do not generally
feature both de�cient homologous repair and mismatch repair43.

Table 2:  Patients with hypermutant tumors. Patients with at least one hypermutant or ultra-hypermutant tumor or
cell line. Pathogenic (P) or likely pathogenic (LP) germline variants, coding region TMB, phase of therapy, therapeutic
interventions, cancer predisposition (CMMRD = Constitutional mismatch repair de�ciency), and molecular subtypes are
included.
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Next, we asked whether transcriptomic classi�cation of TP53 dysregulation and/or telomerase activity
recapitulate these oncogenic biomarkers’ known prognostic in�uence. We identi�ed several expected
trends, including a signi�cant overall survival bene�t following full tumor resection (HR = 0.35, 95% CI
= 0.2 - 0.62, p < 0.001) or if the tumor was an LGG (HR = 0.046, 95% CI = 0.0062 - 0.34, p = 0.003), and a
signi�cant risk if the tumor was an HGG (HR = 6.2, 95% CI = 4.0 - 9.5, p < 0.001) (Figure 4F; STAR
Methods). High telomerase scores were associated with poor prognosis across brain tumor
histologies (HR = 20, 95% CI = 6.4 - 62, p < 0.001), demonstrating that EXTEND  scores calculated from
RNA-Seq are an e�ective rapid surrogate measure for telomerase activity. Higher TP53 scores were
associated with signi�cant survival risks (Table S4) within DMGs (HR = 6436, 95% CI = 2.67 - 1.55e7, p =
0.03) and ependymomas (HR = 2003, 95% CI = 9.9 - 4.05e5, p = 0.005). Given this result, we next
assessed whether di�erent HGG molecular subtypes carry di�erent survival risks if strati�ed by TP53
status. We found that DMG H3 K28 tumors with TP53 loss had signi�cantly worse prognosis (HR = 2.8,
CI = 1.4-5.6, p = 0.003) than those with wildtype TP53 (Figure 4G and Figure 4H), recapitulating results
from two recent restrospective analyses of DIPG tumors10,54.

Figure 4:  TP53 and telomerase activity A, Receiver Operating Characteristic for TP53 classi�er run on stranded FPKM
RNA-Seq. B, Violin and strip plots of TP53 scores plotted by TP53 alteration type (Nactivated = 11, Nlost = 100, Nother =
866). C, Violin and strip plots of TP53 RNA expression plotted by TP53 activation status (Nactivated = 11, Nlost = 100, Nother



= 866). D, Boxplots of TP53 and telomerase (EXTEND) scores across cancer groups. TMB status is highlighted in orange
(hypermutant) or red (ultra-hypermutant). E, Heatmap of RefSig mutational signatures for patients with at least one
hypermutant tumor or cell line. F, Forest plot depicting prognostic e�ects of TP53 and telomerase scores on overall
survival (OS), controlling for extent of tumor resection, LGG group, and HGG group. G, Forest plot depicting the e�ect of
molecular subtype on HGG OS. Hazard ratios (HR) with 95% con�dence intervals and p-values (multivariate Cox) are
given in F and G. Black diamonds denote signi�cant p-values, and gray diamonds denote reference groups. H, Kaplan-
Meier curve of HGGs by molecular subtype. Boxplot represents 5% (lower whisker), 25% (lower box), 50% (median), 75%
(upper box), and 95% (upper whisker) quantiles.

Histologic and oncogenic pathway clustering

UMAP visualization of gene expression variation across brain tumors (Figure 5A) showed expected
histological clustering of brain tumors. We further observed that, except for three outliers,
C11orf95::RELA (ZFTA::RELA) fusion-positive ependymomas fell within distinct clusters (Figure S6A).
Medulloblastoma (MB) tumors clustered by molecular subtype, with WNT and SHH in distinct clusters
and Groups 3 and 4 showing some expected overlap (Figure S6B). Notably, two MB tumors annotated
as SHH did not cluster with the other MB tumors and one clustered with Group 3/4 tumors,
suggesting potential subtype misclassi�cation or di�erent underlying biology of these two tumors.
BRAF-driven LGGs (Figure S6C) fell into three separate clusters, suggesting additional shared biology
within each cluster. Histone H3 G35-mutant HGGs generally clustered together and away from K28-
mutant tumors (Figure S6D). Interestingly, although H3 K28-mutant and H3 wildtype tumors have
di�erent biological drivers55, they did not form distinct clusters. This pattern suggests these subtypes
may be driven by common transcriptional programs, have other much stronger biological drivers than
their known distinct epigenetic drivers, or we lack power to detect transcriptional di�erences.

We performed GSVA for Hallmark cancer gene sets (Figure 5B) and quanti�ed immune cell fractions
using quanTIseq (Figure 5C and Figure S6E), results from which recapitulated previously-described
tumor biology. For example, HGG, DMG, MB, and ATRT tumors are known to upregulate MYC56 which
in turn activates E2F and S phase57. Indeed, we detected signi�cant (Bonferroni-corrected p < 0.05)
upregulation of MYC and E2F targets, as well as G2M (cell cycle phase following S phase) in MBs,
ATRTs, and HGGs compared to several other cancer groups. In contrast, LGGs showed signi�cant
downregulation (Bonferroni-corrected p < 0.05, multiple cancer group comparisons) of these
pathways. Schwannomas and neuro�bromas, which have an in�ammatory immune
microenvironment of T and B lymphocytes and tumor-associated macrophages (TAMs), are driven by
upregulation of cytokines such as IFN , IL-1, and IL-6, and TNF 58. GSVA revealed signi�cant
upregulation of these cytokines in hallmark pathways (Bonferroni-corrected p < 0.05, multiple cancer
group comparisons) (Figure 5B), and monocytes dominated these tumors’ immune cell repertoire
(Figure 5C). We also observed signi�cant upregulation of pro-in�ammatory cytokines IFN  and IFN
in both LGGs and craniopharyngiomas when compared to either medulloblastoma or ependymomas
(Bonferroni-corrected p < 0.05) (Figure 5B). Together, these results support previous proteogenomic
�ndings that aggressive medulloblastomas and ependymomas have lower immune in�ltration
compared to BRAF-driven LGGs and craniopharyngiomas59.

Although CD8+ T-cell in�ltration across all cancer groups was minimal (Figure 5C), we observed signal
in speci�c cancer molecular subtypes (Groups 3 and 4 medulloblastoma) as well as outlier tumors
(BRAF-driven LGG, BRAF-driven and wildtype ganglioglioma, and CNS embryonal NOS; Figure S6E)
Surprisingly, the classically immunologically-cold HGGs and DMGs60,61 contained higher overall
fractions of immune cells, primarily monocytes, dendritic cells, and NK cells (Figure 5C). Thus,
quanTIseq might have actually captured microglia within these immune cell fractions.

While we did not detect notable prognostic e�ects of immune cell in�ltration on overall survival in
HGGs or DMGs, we found that high levels of macrophage M1 and monocytes were associated with
poorer overall survival (monocyte HR = 2.1e18, 95% CI = 3.80e5 - 1.2e31, p = 0.005, multivariate Cox) in
medulloblastomas (Figure 5D). We further reproduced previous �ndings (Figure 5E) that
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medulloblastomas typically have low expression of CD274 (PD-L1)62. We also found that higher
expression of CD274 was signi�cantly associated with improved overall prognosis for
medulloblastoma tumors, although marginal (HR = 0.0012, 95% CI = 7.5e−06 - 0.18, p = 0.008,
multivariate Cox) (Figure 5D). This result may be explained by the higher expression of CD274
observed in WNT subtype tumors by us and others63, as this diagnosis carries the best prognosis of all
medulloblastoma subgroups (Figure 5E).

We additionally explored the ratio of CD8+ to CD4+ T cells across tumor subtypes. This ratio has been
associated with better immunotherapy response and prognosis following PD-L1 inhibition in non-
small cell lung cancer or adoptive T cell therapy in multiple stage III or IV cancers64,65. While
adamantinomatous craniopharyngiomas and Group 3 and Group 4 medulloblastomas had the
highest ratios (Figure S6F), very few tumors had ratios greater than 1, highlighting an urgent need to
identify novel therapeutics for pediatric brain tumors with poor prognosis.

Finally, we explored the potential in�uence of tumor purity by repeating selected transcriptomic
analyses restricted to only samples with high tumor purity (see STAR Methods). Results from these
analyses were broadly consistent (Figure S7D-I) with results derived from all stranded RNA-Seq
samples.



Figure 5:  Transcriptomic and immune landscape of pediatric brain tumors A, First two dimensions of
transcriptome data UMAP, with points colored by broad histology. B, Heatmap of GSVA scores for Hallmark gene sets
with tumors ordered by cancer group. C, Boxplots of quanTIseq estimates of immune cell proportions in cancer groups
with N > 15 tumors. Note: other HGGs and other LGGs have immune cell proportions similar to DMG and pilocytic
astrocytoma, respectively, and are not shown. D, Forest plot depicting additive e�ects of CD274 expression, immune cell
proportion, and extent of tumor resection on OS of medulloblastoma patients. HRs with 95% con�dence intervals and p-
values (multivariate Cox) are listed. Black diamonds denote signi�cant p-values, and gray diamonds denote reference
groups. Note: the Macrophage M1 HR was 0 (coe�cient = -9.90e+4) with in�nite upper and lower CIs, and thus was not
included in the �gure. E, Boxplot of CD274 expression (log2 FPKM) for medulloblastomas grouped by subtype.
Bonferroni-corrected p-values from Wilcoxon tests are shown. Boxplot represents 5% (lower whisker), 25% (lower box),
50% (median), 75% (upper box), and 95% (upper whisker) quantiles. Only stranded RNA-Seq data is plotted.

Discussion

The CBTN released the PBTA raw genomic data in September 2018 without embargo, allowing
researchers immediate access to begin making discoveries on behalf of children with CNS tumors
everywhere. Since this publication, the CBTN has approved over 200 data research projects4 from 69
di�erent institutions, with 60% from non-CBTN sites. We created OpenPBTA as an open, real-time,



reproducible analysis framework to genomically characterize pediatric brain tumors, bringing
together basic and translational researchers, clinicians, and data scientists. We provide reusable code
and data resources, paired with cloud-based availability of source and derived data resources, to the
pediatric oncology community, encouraging interdisciplinary collaboration. To our knowledge, this
initiative represents the �rst large-scale, collaborative, open analysis of genomic data coupled with
open manuscript writing, wherein we comprehensively analyzed the PBTA cohort. Using available
WGS, WXS, and RNA-Seq data, we generated high-con�dence consensus SNV and CNV calls, prioritized
putative oncogenic fusions, and established over 40 scalable and rigorously-reviewed modules to
perform common downstream cancer genomics analyses. We detected expected patterns of genomic
lesions, mutational signatures, and aberrantly regulated signaling pathways across multiple pediatric
brain tumor histologies.

Assembling large, pan-histology cohorts of fresh frozen samples and associated clinical phenotypes
and outcomes requires a multi-year, multi-institutional framework, like those provided by CBTN and
PNOC. As such, uniform clinical molecular subtyping was largely not performed for this cohort at the
time of sample collection. Since DNA methylation data for these samples were not yet available to
classify molecular subtypes, we created RNA- and DNA-based subtyping modules aligned with WHO
molecularly-de�ned diagnoses. We worked closely with pathologists and clinicians to assign research-
grade integrated diagnoses for 60% of tumors while discovering incorrectly diagnosed or mis-
identi�ed samples in the OpenPBTA cohort. For example, we subtyped medulloblastoma tumors, of
which only 35% (43/122) had prior subtype information from pathology reports, using MMS2  or 
MedulloClassifier 22,23 and subsequently applied the consensus of these methods to subtype all

medulloblastomas.

We advanced the integrative analyses and cross-cohort comparison via a number of validated
modules. We used an expression classi�er to determine whether tumors have dysfunctional TP5343

and the EXTEND algorithm to determine their degree of telomerase activity using a 13-gene
signature45. Interestingly, we found that hypermutant HGGs universally displayed TP53 dysregulation,
unlike adult cancers like colorectal cancer and gastric adenocarcinoma where TP53 dysregulation in
hypermutated tumors is less common66,67. Furthermore, high TP53 scores were a signi�cant
prognostic marker for poor overall survival for patients with tumor types including H3 K28-mutant
DMGs and ependymomas. We also show that EXTEND scores are a robust surrogate measure for
telomerase activity in pediatric brain tumors. By assessing TP53 and telomerase activity prospectively
from expression data, information usually only attainable with DNA sequencing and/or qPCR, we
incorporated oncogenic biomarker and prognostic knowledge thereby expanding our biological
understanding of these tumors.

We identi�ed enrichment of hallmark cancer pathways and characterized the immune cell landscape
across pediatric brain tumors, demonstrating tumors in some histologies, such as schwannomas,
craniopharyngiomas, and low-grade gliomas, may have a in�ammatory tumor microenvironment.
Notably, we observed upregulation of IFN , IL-1, and IL-6, and TNF  in craniopharyngiomas, tumors
di�cult to resect due to their anatomical location and critical surrounding structures. Neurotoxic side
e�ects have been reported in response to IFN  immunotherapy68,69, leading researchers to propose
additional immune vulnerabilities, such as IL-6 inhibition and immune checkpoint blockade, as cystic
adamantinomatous craniopharyngiomas therapies70–74. Our results support this endeavor. Finally,
we reproduced the overall known poor in�ltration of CD8+ T cells and general low expression of
CD274 (PD-L1) in pediatric brain tumors, highlighting that we urgently need novel therapeutic
strategies for tumors unlikely to respond to immune checkpoint blockade therapy.

While large-scale collaborative e�orts may take a longer time to complete, adoption an open science
framework substantially mitigated this concern. By maintaining all data, analytical code, and results in
public repositories, we ensured that such logistics did not hinder progress in pediatric cancer
research. Indeed, OpenPBTA is already a foundational data analysis and processing layer for several
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discovery research and translational projects which will continue to add other genomic modalities and
analyses, including germline, epigenomic, single-cell, splicing, imaging, and model drug response data.
For example, the OpenPBTA RNA fusion �ltering module led to the development of the R package
annoFuse75 and an R Shiny application shinyFuse. Leveraging OpenPBTA’s medulloblastoma
subtyping and immune deconvolution analyses, Dang and colleagues showed that SHH tumors are
enriched with monocyte and microglia-derived macrophages, which may accumulate following
radiation therapy9. Expression and CNV analyses demonstrated that GPC2 is a highly expressed and
copy-number gained immunotherapeutic target in ETMRs, medulloblastomas, choroid plexus
carcinomas, H3 wildtype high-grade gliomas, and DMGs. Foster and colleagues therefore developed a
chimeric antigen receptor (CAR) directed against GPC2, which shows preclinical e�cacy in mouse
models11. Another study harnessed OpenPBTA to integrate germline variants, discovering that
pediatric HGG patients with alternative telomere lengthening are enriched for pathogenic or likely
pathogenic germline variants in the MMR pathway, possess oncogenic ATRX mutations and have
increased TMB12. Moreover, OpenPBTA has enabled a framework to support real-time integration of
clinical trial subjects as they enrolled on the PNOC008 high-grade glioma clinical trial76 or PNOC027
medulloblastoma clinical trial77, allowing researchers and clinicians to link tumor biology to
translational impact through clinical decision support during tumor board discussions. Finally, as part
of the NCI’s CCDI, OpenPBTA was recently expanded into OpenPedCan, a pan-pediatric cancer e�ort
(https://github.com/PediatricOpenTargets/OpenPedCan-analysis) which enabled creation of the
pediatric Molecular Targets Platform (https://moleculartargets.ccdi.cancer.gov/) in support of the
RACE Act. An additional, large-scale cohort of >1,500 tumor samples and associated germline DNA is
undergoing harmonization as part of CBTN CCDI-Kids First NCI and Common Fund project
(https://commonfund.nih.gov/kids�rst/2021X01projects#FY21_Resnick) and will be immediately
integrated with OpenPBTA data through OpenPedCan. OpenPBTA has paved the way for new modes
of collaborative data-driven discovery using open, reproducible, and scalable analyses that will
continue to grow over time. We anticipate this foundational work will have an ongoing, long-term
impact for pediatric oncology researchers, ultimately accelerating translation and leading to improved
outcomes for children with cancer.

All code and processed data are openly available through GitHub, CAVATICA, Zenodo, and
PedcBioPortal (see STAR METHODS).

Limitations of Study

Notably, PBTA brain tumor samples were collected over decades, and RNA samples were prepared
using two distinct library preparations (stranded or poly-A, Figure S7A) by multiple sequencing
centers. While we noted a strong library preparation batch e�ect (Figure S7B) and a possible
sequencing center batch e�ect (Figure S7C), cancer groups are highly unbalanced across library
preparations (Figure S7A). We did not perform batch correction because removing batch e�ects
across unbalanced groups may induce false di�erences among groups78,79. Instead, we circumvent
batch e�ects by grouping only stranded RNA-Seq expression data, which comprises the vast majority
of the PBTA cohort, for transcriptomic analyses presented in Figure 4 and Figure 5 . As batch
correction strategy depends highly on research goals79, we provide library preparation-speci�c
expression matrices in the OpenPBTA data release for others to adapt to their needs. A second
potential limitation is that performing analyses with all samples, rather than samples with high tumor
purity, might result in loss of information, such as subclonal variants or low-level oncogenic pathway
expression. To this end, we re-performed transcriptomic analyses using only samples with high tumor
purity (see Methods for details), and indeed, results were broadly consistent with those derived from
the full cohort (Figure S7D-I). To enable more robust statistical analysis and presentation of results,
we randomly selected one independent specimen from patients with duplicate sequenced samples
per tumor event rather than combining the data. This practice did not induce notable di�erences if
the selected specimen changed over time, e.g., with a new data release. Finally, because this initial
PBTA cohort mostly contains samples collected at diagnosis from one tumor section/punch, we could

http://shiny.imbei.uni-mainz.de:3838/shinyFuse/
https://github.com/PediatricOpenTargets/OpenPedCan-analysis
https://moleculartargets.ccdi.cancer.gov/
https://commonfund.nih.gov/kidsfirst/2021X01projects#FY21_Resnick


not reliably perform systematic intratumoral and/or longitudinal analyses, though we expect nearly
100 paired longitudinal tumors from the (NIH X01 CA267587-01 pediatric brain tumor cohort) to be
released through OpenPedCan for future exploration.
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Except for the �rst and last four authors, authorship order was determined as follows: Authors who
contributed to the OpenPBTA code base are listed based on number of modules included in the
manuscript to which that individual contributed and, in the case of ties, a random order is used. All
remaining authors are then listed in a random order.

Code for determining authorship order can be found in the count-contributions  module of the
OpenPBTA analysis repository.
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Figure Titles and Legends

Figure 1. Overview of the OpenPBTA Project. A, CBTN and PNOC collected tumors from 943
patients. 22 tumor cell lines were created, and over 2000 specimens were sequenced (N = 1035 RNA-
Seq, N = 940 WGS, and N = 32 WXS or targeted panel). The Kids First Data Resource Center Data
harmonized the data using Amazon S3 through CAVATICA. Panel created with BioRender.com. B,
Number of biospecimens across phases of therapy, with one broad histology per panel. Each bar
denotes a cancer group. (Abbreviations: GNG = ganglioglioma, Other LGG = other low-grade glioma,
PA = pilocytic astrocytoma, PXA = pleomorphic xanthoastrocytoma, SEGA = subependymal giant cell
astrocytoma, DIPG = di�use intrinsic pontine glioma, DMG = di�use midline glioma, Other HGG =
other high-grade glioma, ATRT = atypical teratoid rhabdoid tumor, MB = medulloblastoma, Other ET =
other embryonal tumor, EPN = ependymoma, PNF = plexiform neuro�broma, DNET =
dysembryoplastic neuroepithelial tumor, CRANIO = craniopharyngioma, EWS = Ewing sarcoma, CPP =
choroid plexus papilloma). C, Overview of the open analysis and manuscript contribution models.
Contributors proposed analyses, implemented it in their fork, and �led a pull request (PR) with
proposed changes. PRs underwent review for scienti�c rigor and accuracy. Container and continuous
integration technologies ensured that all software dependencies were included and code was not
sensitive to underlying data changes. Finally, a contributor �led a PR documenting their methods and
results to the Manubot-powered manuscript repository for review. D, A potential path for an analytical
PR. Arrows indicate revisions.

Figure 2. Mutational landscape of PBTA tumors. Frequencies of canonical somatic gene mutations,
CNVs, fusions, and TMB (top bar plot) for the top mutated genes across primary tumors within the
OpenPBTA dataset. A, LGGs (N = 226): pilocytic astrocytoma (N = 104), other LGG (N = 68),
ganglioglioma (N = 35), pleomorphic xanthoastrocytoma (N = 9), subependymal giant cell astrocytoma
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(N = 10). B, Embryonal tumors (N = 129): medulloblastoma (N = 95), atypical teratoid rhabdoid tumor
(N = 24), other embryonal tumor (N = 10). C, HGGs (N = 63): di�use midline glioma (N = 36) and other
HGG (N = 27). D, Other CNS tumors (N = 153): ependymoma (N = 60), craniopharyngioma (N = 31),
meningioma (N = 17), dysembryoplastic neuroepithelial tumor (N = 19), Ewing sarcoma (N = 7),
schwannoma (N = 12), and neuro�broma plexiform (N = 7). Rare CNS tumors are displayed in Figure
S3B. Histology ( Cancer Group ) and sex annotations are displayed under each plot. Only tumors
with mutations in the listed genes are shown. Multiple CNVs are denoted as a complex event. N
denotes the number of unique tumors (one tumor per patient).

Figure 3. Mutational co-occurrence and signatures highlight key oncogenic drivers. A,
Nonsynonymous mutations for 50 most commonly-mutated genes across all histologies. “Other”
denotes a histology with <10 tumors. B, Co-occurrence and mutual exclusivity of mutated genes. The
co-occurrence score is de�ned as  where  is Fisher’s exact test and  is 1 when
mutations co-occur more often than expected or -1 when exclusivity is more common. C, Number of
SV and CNV breaks are signi�cantly correlated (Adjusted R = 0.443, p = 1.05e-38). D, Chromothripsis
frequency across cancer groups with N >= 3 tumors. E, Sina plots of RefSig signature weights for
signatures 1, 11, 18, 19, 3, 8, N6, MMR2, and Other across cancer groups. Boxplot represents 5%
(lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.

Figure 4. TP53 and telomerase activity A, Receiver Operating Characteristic for TP53 classi�er run
on stranded FPKM RNA-Seq. B, Violin and strip plots of TP53 scores plotted by TP53 alteration type
(Nactivated = 11, Nlost = 100, Nother = 866). C, Violin and strip plots of TP53 RNA expression plotted by
TP53 activation status (Nactivated = 11, Nlost = 100, Nother = 866). D, Boxplots of TP53 and telomerase
(EXTEND) scores across cancer groups. TMB status is highlighted in orange (hypermutant) or red
(ultra-hypermutant). E, Heatmap of RefSig mutational signatures for patients with at least one
hypermutant tumor or cell line. F, Forest plot depicting prognostic e�ects of TP53 and telomerase
scores on overall survival (OS), controlling for extent of tumor resection, LGG group, and HGG group.
G, Forest plot depicting the e�ect of molecular subtype on HGG OS. Hazard ratios (HR) with 95%
con�dence intervals and p-values (multivariate Cox) are given in F and G. Black diamonds denote
signi�cant p-values, and gray diamonds denote reference groups. H, Kaplan-Meier curve of HGGs by
molecular subtype. Boxplot represents 5% (lower whisker), 25% (lower box), 50% (median), 75%
(upper box), and 95% (upper whisker) quantiles.

Figure 5. Transcriptomic and immune landscape of pediatric brain tumors A, First two
dimensions of transcriptome data UMAP, with points colored by broad histology. B, Heatmap of GSVA
scores for Hallmark gene sets with tumors ordered by cancer group. C, Boxplots of quanTIseq
estimates of immune cell proportions in cancer groups with N > 15 tumors. Note: other HGGs and
other LGGs have immune cell proportions similar to DMG and pilocytic astrocytoma, respectively, and
are not shown. D, Forest plot depicting additive e�ects of CD274 expression, immune cell proportion,
and extent of tumor resection on OS of medulloblastoma patients. HRs with 95% con�dence intervals
and p-values (multivariate Cox) are listed. Black diamonds denote signi�cant p-values, and gray
diamonds denote reference groups. Note: the Macrophage M1 HR was 0 (coe�cient = -9.90e+4) with
in�nite upper and lower CIs, and thus was not included in the �gure. E, Boxplot of CD274 expression
(log2 FPKM) for medulloblastomas grouped by subtype. Bonferroni-corrected p-values from Wilcoxon
tests are shown. Boxplot represents 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper
box), and 95% (upper whisker) quantiles. Only stranded RNA-Seq data is plotted.

Table Titles and Legends

Table 1. Molecular subtypes generated through the OpenPBTA project. Broad tumor histologies,
molecular subtypes generated, and number of patients and tumors subtyped within OpenPBTA.
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Table 2. Patients with hypermutant tumors. Patients with at least one hypermutant or ultra-
hypermutant tumor or cell line. Pathogenic (P) or likely pathogenic (LP) germline variants, coding
region TMB, phase of therapy, therapeutic interventions, cancer predisposition (CMMRD =
Constitutional mismatch repair de�ciency), and molecular subtypes are included.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact

Requests for access to OpenPBTA raw data and/or specimens may be directed to, and will be ful�lled
by Jo Lynne Rokita (rokita@chop.edu).

Materials availability

This study did not create new, unique reagents.

Data and code availability

Raw and harmonized WGS, WXS, and RNA-Seq data derived from human samples are available within
the KidsFirst Portal80 upon access request to the CBTN (https://cbtn.org/) as of the date of the
publication. In addition, merged summary �les are openly accessible at
https://cavatica.sbgenomics.com/u/cavatica/openpbta or via download script in the
https://github.com/AlexsLemonade/OpenPBTA-analysis repository. Summary data are visible within
PedcBioPortal at https://pedcbioportal.kids�rstdrc.org/study/summary?id=openpbta. Associated DOIs
are listed in the Key Resources Table. Data underlying manuscript �gures are available on Zenodo81.

All original code was developed within the following repositories and is publicly available as follows.
Primary data analyses can be found at https://github.com/d3b-center/OpenPBTA-work�ows.
Downstream data analyses can be found at https://github.com/AlexsLemonade/OpenPBTA-analysis.
Manuscript code can be found at https://github.com/AlexsLemonade/OpenPBTA-manuscript.
Associated DOIs are listed in the Key Resources Table. Software versions are documented in Table
S5 as an appendix to the Key Resources Table.

Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

Data releases

We maintained a data release folder on Amazon S3, downloadable directly from S3 or our open-
access CAVATICA project, with merged �les for each analysis (See Data and code availability section).
As we produced new results (e.g., tumor mutation burden calculations) that we expected to be used
across multiple analyses, or identi�ed data issues, we created new data releases in a versioned
manner. We reran all manuscript-speci�c analysis modules with the latest data release (v23) prior to
submission and subsequently created a GitHub repository-tagged release to ensure reproducibility.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The Pediatric Brain Tumor Atlas specimens are comprised of samples from Children’s Brain Tumor
Network (CBTN)4 and the Pediatric Paci�c Neuro-Oncology Consortium (PNOC). The CBTN is a
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collaborative, multi-institutional (32 institutions worldwide) research program dedicated to the study
of childhood brain tumors. PNOC is an international consortium dedicated to bringing new therapies
to children and young adults with brain tumors. We also include blood and tumor biospecimens from
newly-diagnosed di�use intrinsic pontine glioma (DIPG) patients as part of the PNOC003 clinical trial
PNOC003/NCT0227498714.

Model generation

Previously, CBTN-generated cell lines were derived from either fresh tumor tissue directly obtained
from surgery performed at Children’s Hospital of Philadelphia (CHOP) or from prospectively collected
tumor specimens stored in Recover Cell Culture Freezing medium (cat# 12648010, Gibco). Tumor
tissue was dissociated using enzymatic method with papain as described13. Brie�y, we washed tissue
with HBSS (cat# 14175095, Gibco), and tissue was minced and incubated with activated papain
solution (cat# LS003124, SciQuest) for up to 45 minutes. Ovomucoid solution (cat# 542000, SciQuest)
was used to inactivate the papain, tissue was brie�y treated tissue with DNase (cat# 10104159001,
Roche) and passed through a 100μm cell strainer (cat# 542000, Greiner Bio-One). Two cell culture
conditions were initiated based on the number of cells available. For cultures utilizing the fetal bovine
serum (FBS), cells were plated a minimum density of 3×105 cells/mL in DMEM/F-12 medium (cat#
D8062, Sigma) supplemented with 20% FBS (cat# SH30910.03, Hyclone), 1% GlutaMAX (cat#
35050061, Gibco), Penicillin/Streptomycin-Amphotericin B Mixture (cat# 17-745E, Lonza), and 0.2%
Normocin (cat# ant-nr-2, Invivogen). For serum-free media conditions, cells were plated at minimum
density of 1×106 cells/mL in DMEM/F12 medium supplemented with 1% GlutaMAX, 1X B-27
supplement minus vitamin A (cat# 12587-010, Gibco), 1x N-2 supplement (cat# 17502001, Gibco), 20
ng/ml epidermal growth factor (cat# PHG0311L, Gibco), 20 ng/mL basic �broblast growth factor (cat#
100-18B, PeproTech), 2.5μg/mL heparin (cat# H3149, Sigma), Penicillin/Streptomycin-Amphotericin B
Mixture, and 0.2% Normocin. All cell lines used for nucleic acid extraction were con�rmed to be
mycoplasma-free. Guardian Forensic Sciences performed GenePrint 24 (cat# B1870, Promega), short
tandem repeat (STR) analysis on cell line extracted DNA to both con�rm identity and that they were
free of cross-contamination. Additionally, we performed NGSCheckMate 82 on matched DNA and RNA
cell line (tumor) and peripheral blood (normal) CRAM �les to further con�rm identity.

METHOD DETAILS

Nucleic acids extraction and library preparation

PNOC samples

The Translational Genomic Research Institute (TGEN; Phoenix, AZ) performed DNA and RNA
extractions on tumor biopsies using a DNA/RNA AllPrep Kit (Qiagen, #80204). All RNA used for library
prep had a minimum RIN of seven, but no QC thresholds were implemented for the DNA. For library
preparation, 500 ng of nucleic acids were used as input for RNA-Seq, WXS, and targeted DNA panel
(panel) sequencing. RNA library preparation was performed using the TruSeq RNA Sample Prep Kit
(Illumina, #FC-122-1001) with poly-A selection, and the exome prep was performed using KAPA Library
Preparation Kit (Roche, #KK8201) using Agilent’s SureSelect Human All Exon V5 backbone with custom
probes. The targeted DNA panel developed by Ashion Analytics (formerly known as the GEM Cancer
panel) consisted of exonic probes against 541 cancer genes. Both panel and WXS assays contained
44,000 probes across evenly spaced genomic loci used for genome-wide copy number analysis. For
the panel, additional probes tiled across intronic regions of 22 known tumor suppressor genes and 22
genes involved in common cancer translocations for structural analysis. All extractions and library
preparations were performed according to manufacturer’s instructions.

CBTN samples

https://www.pnoc.us/
https://clinicaltrials.gov/ct2/show/NCT02274987


Blood, tissue, and cell line DNA/RNA extractions were performed at the Biorepository Core at CHOP.
Brie�y, 10-20 mg frozen tissue, 0.4-1ml of blood, or 2e6 cells pellet was used for extractions. Tissues
were lysed using a Qiagen TissueLyser II (Qiagen) with 2×30 sec at 18Hz settings using 5 mm steel
beads (cat# 69989, Qiagen). Both tissue and cell pellets processes included a CHCl3 extraction and
were run on the QIACube automated platform (Qiagen) using the AllPrep DNA/RNA/miRNA Universal
kit (cat# 80224, Qiagen). Blood was thawed and treated with RNase A (cat#, 19101, Qiagen); 0.4-1ml
was processed using the Qiagen QIAsymphony automated platform (Qiagen) using the QIAsymphony
DSP DNA Midi Kit (cat# 937255, Qiagen). DNA and RNA quantity and quality was assessed by
PerkinElmer DropletQuant UV-VIS spectrophotometer (PerkinElmer) and an Agilent 4200 TapeStation
(Agilent, USA) for RIN and DIN (RNA Integrity Number and DNA Integrity Number, respectively). The
NantHealth Sequencing Center, BGI at CHOP, or the Genomic Clinical Core at Sidra Medical and
Research Center performed library preparation and sequencing. BGI at CHOP and Sidra Medical and
Research Center used in house, center-speci�c work�ows for sample preparation. At NantHealth
Sequencing Center, DNA sequencing libraries were prepared for tumor and matched-normal DNA
using the KAPA HyperPrep kit (cat# 08098107702, Roche), and tumor RNA-Seq libraries were prepared
using KAPA Stranded RNA-Seq with RiboErase kit (cat# 07962304001, Roche).

Data generation

NantHealth and Sidra performed 2x150 bp WGS on paired tumor (~60X) and constitutive DNA (~30X)
samples on an Illumina X/400. BGI at CHOP performed 2x100 bp WGS sequenced at 60X depth for
both tumor and normal samples. NantHealth performed ribosomal-depleted whole transcriptome
stranded RNA-Seq to an average depth of 200M. BGI at CHOP performed poly-A or ribosomal-
depleted whole transcriptome stranded RNA-Seq to an average depth of 100M. The Translational
Genomic Research Institute (TGEN; Phoenix, AZ) performed paired tumor (~200X) and constitutive
whole exome sequencing (WXS) or targeted DNA panel (panel) and poly-A selected RNA-Seq (~200M
reads) for PNOC tumor samples. The panel tumor sample was sequenced to 470X, and the normal
panel sample was sequenced to 308X. PNOC 2x100 bp WXS and RNA-Seq libraries were sequenced on
an Illumina HiSeq 2500.

DNA WGS Alignment

We used BWA-MEM 83 to align paired-end DNA-seq reads to the version 38 patch release 12 of the
Homo sapiens genome reference, obtained as a FASTA �le from UCSC (see Key Resources Table).
Next, we used the Broad Institute’s Best Practices84 to process Binary Alignment/Map �les (BAMs) in
preparation for variant discovery. We marked duplicates using SAMBLASTER 85, and we merged and
sorted BAMs using Sambamba 86 We used the BaseRecalibrator  submodule of the Broad’s
Genome Analysis Tool Kit GATK 87 to process BAM �les. Lastly, for normal/germline input, we used
the GATK  HaplotypeCaller 88 submodule on the recalibrated BAM to generate a genomic variant
call format (GVCF) �le. This �le is used as the basis for germline calling, described in the SNV calling
for B-allele Frequency (BAF) generation section.

We obtained references from the Broad Genome References on AWS bucket with a general
description of references at https://s3.amazonaws.com/broad-references/broad-references-
readme.html.

Quality Control of Sequencing Data

To con�rm sample matches and remove mis-matched samples from the dataset, we performed 
NGSCheckMate 82 on matched tumor/normal CRAM �les. Brie�y, we processed CRAMs using 
BCFtools  to �lter and call 20k common single nucleotide polymorphisms (SNPs) using default

parameters. We used the resulting VCFs to run NGSCheckMate . Per NGSCheckMate  author

https://s3.console.aws.amazon.com/s3/buckets/broad-references/hg38/v0/
https://s3.amazonaws.com/broad-references/broad-references-readme.html


recommendations, we used <= 0.61 as a correlation coe�cient cuto� at sequencing depths > 10 to
predict mis-matched samples. We determined RNA-Seq read strandedness by running the 
infer_experiment.py  script from RNA-SeQC 89 on the �rst 200k mapped reads. We removed any

samples whose calculated strandedness did not match strandedness information provided by the
sequencing center. We required that at least 60% of RNA-Seq reads mapped to the human reference
for samples to be included in analysis. During OpenPBTA analysis, we identi�ed some samples which
were mis-identi�ed or potentially swapped. Through collaborative analyses and pathology review,
these samples were removed from our data releases and from the Kids First portal. Sample removal
and associated justi�cations were documented in the OpenPBTA data release notes.

Germline Variant Calling

SNP calling for B-allele Frequency (BAF) generation

We performed germline haplotype calls using the GATK  Joint Genotyping Work�ow on individual
GVCFs from the normal sample alignment work�ow. Using only SNPs, we applied the GATK  generic
hard �lter suggestions to the VCF, with an additional requirement of 10 reads minimum depth per
SNP. We used the �ltered VCF as input to Control-FREEC  and CNVkit  (below) to generate B-allele
frequency (BAF) �les. This single-sample work�ow is available in the D3b GitHub repository.
References can be obtained from the Broad Genome References on AWS bucket, and a general
description of references can be found at https://s3.amazonaws.com/broad-references/broad-
references-readme.html.

Assessment of germline variant pathogenicity

For patients with hypermutant samples, we �rst added population frequency of germline variants
using ANNOVAR 90 and pathogenicity scoring from ClinVar91 using SnpSift 92. We then �ltered for
variants with read depth >= 15, variant allele fraction >= 0.20, and which were observed at < 0.1%
allele frequency across each population in the Genome Aggregation Database (see Key Resources
Table). Finally, we retained variants in genes included in the KEGG MMR gene set (see Key Resources
Table), POLE, and/or TP53 which were ClinVar-annotated as pathogenic (P) or likely pathogenic (LP)
with review status of >= 2 stars. All P/LP variants were manually reviewed by an interdisciplinary team
of scientists, clinicians, and genetic counselors. This work�ow is available in the D3b GitHub
repository.

Somatic Mutation Calling

SNV and indel calling

We used four variant callers to call SNVs and indels from paired tumor/normal samples with Targeted
Panel, WXS, and/or WGS data: Strelka2 93, Mutect2 94, Lancet 95, and VarDictJava 96. 
VarDictJava -only calls were not retained since ~ 39M calls with low VAF were uniquely called and

may be potential false positives. (~1.2M calls were called by Mutect2 , Strelka2 , and Lancet  and
included consensus CNV calling as described below.) We used only Strelka2 , Mutect2  and 
Lancet  to analyze WXS samples from TCGA. TCGA samples were captured using various WXS target

capture kits and we downloaded the BED �les from the GDC portal . The manufacturers provided
the input interval BED �les for both panel and WXS data for PBTA samples. We padded all panel and
WXS BED �les were by 100 bp on each side for Strelka2 , Mutect2 , and VarDictJava  runs and
by 400 bp for the Lancet  run. For WGS calling, we utilized the non-padded BROAD Institute interval
calling list wgs_calling_regions.hg38.interval_list , comprised of the full genome minus N
bases, unless otherwise noted below. We ran Strelka2 93 using default parameters for canonical
chromosomes (chr1-22, X,Y,M), as recommended by the authors, and we �ltered the �nal Strelka2

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/master/doc/release-notes.md
https://github.com/d3b-center/OpenPBTA-workflows
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VCF for PASS variants. We ran Mutect2  from GATK  according to Broad best practices outlined from
their Work�ow Description Language (WDL), and we �ltered the �nal Mutect2  VCF for PASS variants.
To manage memory issues, we ran VarDictJava 96 using 20 Kb interval chunks of the input BED,
padded by 100 bp on each side, such that if an indel occurred in between intervals, it would be
captured. Parameters and �ltering followed BCBIO standards except that variants with a variant allele
frequency (VAF) >= 0.05 (instead of >= 0.10) were retained. The 0.05 VAF increased the true positive
rate for indels and decreased the false positive rate for SNVs when using VarDictJava  in consensus
calling. We �ltered the �nal VarDictJava  VCF for PASS variants with TYPE=StronglySomatic . We
ran Lancet  using default parameters, except for those noted below. For input intervals to Lancet
WGS, we created a reference BED from only the UTR, exome, and start/stop codon features of the
GENCODE 31 reference, augmented as recommended with PASS variant calls from Strelka2  and 
Mutect2 . We then padded these intervals by 300 bp on each side during Lancet  variant calling. Per

recommendations for WGS samples, we augmented the Lancet input intervals described above with
PASS variant calls from Strelka2  and Mutect2  as validation97.

VCF annotation and MAF creation

We normalized INDELs with bcftools norm  on all PASS VCFs using the 
kfdrc_annot_vcf_sub_wf.cwl  subwork�ow, release v3 (See Table S5). The Ensembl Variant E�ect

Predictor ( VEP )98, reference release 93, was used to annotate variants and bcftools was used to add
population allele frequency (AF) from gnomAD99. We annotated SNV and INDEL hotspots from v2 of
Memorial Sloan Kettering Cancer Center’s (MSKCC) database (See Key Resources Table) as well as the
TERT promoter mutations C228T and C250T100. We annotated SNVs by matching amino acid position
( Protein_position  column in MAF �le) with SNVs in the MSKCC database, we matched splice sites
to HGVSp_Short  values in the MSKCC database, and we matched INDELs based on amino acid
present within the range of INDEL hotspots values in the MSKCC database. We removed non-hotspot
annotated variants with a normal depth less than or equal to 7 and/or gnomAD allele frequency (AF)
greater than 0.001 as potential germline variants. We matched TERT promoter mutations using hg38
coordinates as indicated in ref.100: C228T occurs at 5:1295113 is annotated as existing variant 
s1242535815 , COSM1716563 , or COSM1716558 , and is 66 bp away from the TSS; C250T occurs at

Chr5:1295135, is annotated as existing variant COSM1716559 , and is 88 bp away from the TSS. We
retained variants annotated as PASS  or HotSpotAllele=1  in the �nal set, and we created MAFs
using MSKCC’s vcf2maf  tool.

Gather SNV and INDEL Hotspots

We retained all variant calls from Strelka2 , Mutect2 , or Lancet  that overlapped with an SNV or
INDEL hotspot in a hotspot-speci�c MAF �le, which we then used for select analyses as described
below.

Consensus SNV Calling

Our SNV calling process led to separate sets of predicted mutations for each caller. We considered
mutations to describe the same change if they were identical for the following MAF �elds: 
Chromosome , Start_Position , Reference_Allele , Allele , and Tumor_Sample_Barcode . 
Strelka2  does not call multinucleotide variants (MNV), but instead calls each component SNV as a

separate mutation, so we separated MNV calls from Mutect2  and Lancet  into consecutive SNVs
before comparing them to Strelka2  calls. We examined VAFs produced by each caller and
compared their overlap with each other (Figure S2). VarDictJava  calls included many variants that
were not identi�ed by other callers (Figure S2C), while the other callers produced results that were
relatively consistent with one another. Many of these VarDictJava -speci�c calls were variants with

https://github.com/bcbio/bcbio-nextgen


low allele frequency (Figure S2B). We therefore derived consensus mutation calls as those shared
among the other three callers ( Strelka2 , Mutect2 , and Lancet ), and we did not further consider 
VarDictJava  calls due to concerns it called a large number of false positives. This decision had

minimal impact on results because VarDictJava  also identi�ed nearly every mutation that the
other three callers identi�ed, in addition to many unique mutations.

Somatic Copy Number Variant Calling (WGS samples only)

We used Control-FREEC 101,102 and CNVkit 103 for copy number variant calls. For both algorithms,
the germline_sex_estimate  (described below) was used as input for sample sex and germline
variant calls (above) were used as input for BAF estimation. Control-FREEC  was run on human
genome reference hg38 using the optional parameters of a 0.05 coe�cient of variation, ploidy choice
of 2-4, and BAF adjustment for tumor-normal pairs. Theta2 104 used VarDictJava  germline and
somatic calls, �ltered on PASS and strongly somatic, to infer tumor purity. Theta2  purity was added
as an optional parameter to CNVkit  to adjust copy number calls. CNVkit  was run on human
genome reference hg38 using the optional parameters of Theta2 purity and BAF adjustment for
tumor-normal pairs. We used GISTIC 105 on the CNVkit  and the consensus CNV segmentation �les
to generate gene-level copy number abundance (Log R Ratio) as well as chromosomal arm copy
number alterations using the parameters speci�ed in the ( run-gistic  analysis module in the
OpenPBTA Analysis repository).

Consensus CNV Calling

For each caller and sample, we called CNVs based on consensus among Control-FREEC 101,102, 
CNVkit 103, and Manta 106. We speci�cally included CNVs called signi�cant by Control-FREEC  (p-

value < 0.01) and Manta  calls that passed all �lters in consensus calling. We removed sample and
consensus caller �les with more than 2,500 CNVs because we expected these to be noisy and derive
poor quality samples based on cuto�s used in GISTIC 105. For each sample, we included the regions
in the �nal consensus set: 1) regions with reciprocal overlap of 50% or more between at least two of
the callers; 2) smaller CNV regions in which more than 90% of regions are covered by another caller.
We did not include any copy number alteration called by a single algorithm in the consensus �le. We
de�ned copy number as NA  for any regions that had a neutral call for the samples included in the
consensus �le. We merged CNV regions within 10,000 bp of each other with the same direction of gain
or loss into single region. We �ltered out any CNVs that overlapped 50% or more with
immunoglobulin, telomeric, centromeric, segment duplicated regions, or that were shorter than 3000
bp.

Somatic Structural Variant Calling (WGS samples only)

We used Manta 106 for structural variant (SV) calls, and we limited to regions used in Strelka2 . The
hg38 reference for SV calling used was limited to canonical chromosome regions. We used 
AnnotSV 107 to annotate Manta  output. All associated work�ows are available in the work�ows

GitHub repository.

Gene Expression

Abundance Estimation

We used STAR 108 to align paired-end RNA-seq reads, and we used the associated alignment for all
subsequent RNA analysis. We used Ensembl GENCODE 27 “Comprehensive gene annotation” (see Key
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Resources Table) as a reference. We used RSEM 109 for both FPKM and TPM transcript- and gene-
level quanti�cation.

Gene Expression Matrices with Unique HUGO Symbols

To enable downstream analyses, we next identi�ed gene symbols that map to multiple Ensembl gene
identi�ers (in GENCODE v27, 212 gene symbols map to 1866 Ensembl gene identi�ers), known as
multi-mapped gene symbols, and ensured unique mappings ( collapse-rnaseq  analysis module in
the OpenPBTA Analysis repository). To this end, we �rst removed genes with no expression from the 
RSEM  abundance data by requiring an FPKM > 0 in at least 1 sample across the PBTA cohort. We

computed the mean FPKM across all samples per gene. For each multi-mapped gene symbol, we
chose the Ensembl identi�er corresponding to the maximum mean FPKM, using the assumption that
the gene identi�er with the highest expression best represented the expression of the gene. After
collapsing gene identi�ers, 46,400 uniquely-expressed genes remained in the poly-A dataset, and
53,011 uniquely-expressed genes remained in the stranded dataset.

Gene fusion detection

We set up Arriba 110 and STAR-Fusion 111 fusion detection tools using CWL on CAVATICA. For
both of these tools, we used aligned BAM and chimeric SAM �les from STAR  as inputs and 
GRCh38_gencode_v27  GTF for gene annotation. We ran STAR-Fusion  with default parameters

and annotated all fusion calls with the GRCh38_v27_CTAT_lib_Feb092018.plug-n-play.tar.gz
�le from the STAR-Fusion  release. For Arriba , we used a blacklist �le 
blacklist_hg38_GRCh38_2018-11-04.tsv.gz  from the Arriba  release to remove recurrent

fusion artifacts and transcripts present in healthy tissue. We provided Arriba  with strandedness
information for stranded samples, or we set it to auto-detection for poly-A samples. We used 
FusionAnnotator  on Arriba  fusion calls to harmonize annotations with those of STAR-Fusion .

The RNA expression and fusion work�ows can be found in the D3b GitHub repository. The 
FusionAnnotator  work�ow we used for this analysis can be found in the D3b GitHub repository.

QUANTIFICATION AND STATISTICAL ANALYSIS

All p-values are two-sided unless otherwise stated. Z-scores were calculated using the formula 
 where  is the value of interest,  is the mean, and  is the standard deviation.

Tumor purity ( tumor-purity-exploration  module)

Estimating tumor fraction from RNA directly is challenging because most assume tumor cells comprise
all non-immune cells112, which is not a valid assumption for many diagnoses in the PBTA cohort. We
therefore used Theta2 (as described in the “Somatic Copy Number Variant Calling section” Methods
section) to infer tumor purity from WGS samples, further assuming that co-extracted RNA and DNA
samples had the same tumor purity. We then created a set of stranded RNA-Seq data thresholded by
median tumor purity of the cancer group to rerun selected transcriptomic analyses: telomerase-
activity-prediction , tp53_nf1_score , transcriptomic-dimension-reduction , 
immune-deconv , and gene-set-enrichment-analysis . Note that these thresholded analyses,

which only considered stranded RNA samples that also had co-extracted DNA, were performed in
their respective OpenPBTA analyses modules (not within tumor-purity-exploration ).

Recurrently mutated genes and co-occurrence of gene mutations ( interaction-
plots  analysis module)

z = (x– μ)/σ x μ σ

https://github.com/d3b-center/OpenPBTA-workflows/blob/master/cwl/kfdrc_RNAseq_workflow.cwl
https://github.com/d3b-center/FusionAnnotator


Using the consensus SNV calls, we identi�ed genes that were recurrently mutated in the OpenPBTA
cohort, including nonsynonymous mutations with a VAF > 5% among the set of independent samples.
We used VEP 98 annotations, including “High” and “Moderate” consequence types as de�ned in the R
package Maftools 113, to determine the set of nonsynonymous mutations. For each gene, we then
tallied the number of samples that had at least one nonsynonymous mutation.

For genes that contained nonsynonymous mutations in multiple samples, we calculated pairwise
mutation co-occurrence scores. This score was de�ned as  where  is 1 when the odds
ratio is > 1 (indicating co-occurrence), and -1 when the odds ratio is < 1 (indicating mutual exclusivity),
with  de�ned by Fisher’s Exact Test.

Focal Copy Number Calling ( focal-cn-file-preparation  analysis module)

We added the ploidy inferred via Control-FREEC  to the consensus CNV segmentation �le and used
the ploidy and copy number values to de�ne gain and loss values broadly at the chromosome level.
We used bedtools coverage 114 to add cytoband status using the UCSC cytoband �le115 (See Key
Resources Table). The output status call fractions, which are values of the loss, gain, and callable
fractions of each cytoband region, were used to de�ne dominant status at the cytoband-level. We
calculated the weighted means of each status call fraction using band length. We used the weighted
means to de�ne the dominant status at the chromosome arm-level.

A status was considered dominant if more than half of the region was callable and the status call
fraction was greater than 0.9 for that region. We adopted this 0.9 threshold to ensure that the
dominant status fraction call was greater than the remaining status fraction calls in a region.

We aimed to de�ne focal copy number units to avoid calling adjacent genes in the same cytoband or
arm as copy number losses or gains where it would be more appropriate to call the broader region a
loss or gain. To determine the most focal units, we �rst considered the dominant status calls at the
chromosome arm-level. If the chromosome arm dominant status was callable but not clearly de�ned
as a gain or loss, we instead included the cytoband-level status call. Similarly, if a cytoband dominant
status call was callable but not clearly de�ned as a gain or loss, we instead included gene-level status
call. To obtain the gene-level data, we used the IRanges  package in R116 to �nd overlaps between
the segments in the consensus CNV �le and the exons in the GENCODE v27 annotation �le (See Key
Resources Table) . If the copy number value was 0, we set the status to “deep deletion”. For
autosomes only, we set the status to “ampli�cation” when the copy number value was greater than
two times the ploidy value. We plotted genome-wide gains and losses in (Figure S3C) using the R
package ComplexHeatmap 117.

Breakpoint Density (WGS samples only; chromosomal-instability
analysis module)

We de�ned breakpoint density as the number of breaks per genome or exome per sample. For Manta
SV calls, we �ltered to retain “PASS” variants and used breakpoints from the algorithm. For consensus
CNV calls, if |log2 ratio| > log2(1), we annotated the segment as a break. We then calculated
breakpoint density as:

Chromothripsis Analysis (WGS samples only; chromothripsis  analysis
module)

I(− log10(P)) I

P

breakpoint density =
N breaks

Size in Mb of effectively surveyed genome



Considering only chromosomes 1-22 and X, we identi�ed candidate chromothripsis regions in the set
of independent tumor WGS samples with ShatterSeek118, using Manta SV calls that passed all �lters
and consensus CNV calls. We modi�ed the consensus CNV data to �t ShatterSeek  input
requirements as follows: we set CNV-neutral or excluded regions as the respective sample’s ploidy
value from Control-FREEC , and we then merged consecutive segments with the same copy
number value. We classi�ed candidate chromothripsis regions as high- or low-con�dence using the
statistical criteria described by the ShatterSeek  authors.

Immune Pro�ling and Deconvolution ( immune-deconv  analysis module)

We used the R package immunedeconv 119 with the method quanTIseq 120 to deconvolute various
immune cell types in tumors using collapsed FPKM RNA-seq, with samples batched by library type and
then combined. The quanTIseq  deconvolution method directly estimates absolute fractions of 10
immune cell types that represent inferred proportions of the cell types in the mixture. Therefore, we
utilized quanTIseq  for inter-sample, intra-sample, and inter-histology score comparisons.

Gene Set Variation Analysis ( gene-set-enrichment-analysis  analysis module)

We performed Gene Set Variation Analysis (GSVA) on collapsed, log2-transformed RSEM FPKM data
for stranded RNA-Seq samples using the GSVA  Bioconductor package121. We speci�ed the parameter
mx.diff=TRUE  to obtain Gaussian-distributed scores for each of the MSigDB hallmark gene sets122.

We compared GSVA scores among histology groups using ANOVA and subsequent Tukey tests; p-
values were Bonferroni-corrected for multiple hypothesis testing. We plotted scores by cancer group
using the ComplexHeatmap  R package (Figure 5B)117.

Transcriptomic Dimension Reduction ( transcriptomic-dimension-reduction
analysis module)

We applied Uniform Manifold Approximation and Projection (UMAP)123 to log2-transformed FPKM
data for stranded RNA-Seq samples using the umap  R package (See Key Resources Table). We
considered all stranded RNA-Seq samples for this analysis, but we removed genes whose FPKM sum
across samples was less than 100. We set the UMAP number of neighbors parameter to 15.

Fusion prioritization ( fusion_filtering  analysis module)

We performed artifact �ltering and additional annotation on fusion calls to prioritize putative
oncogenic fusions. Brie�y, we considered all in-frame and frameshift fusion calls with at least one
junction read and at least one gene partner expressed (TPM > 1) to be true calls. If a fusion call had a
large number of spanning fragment reads compared to junction reads (spanning fragment minus
junction read greater than ten), we removed these calls as potential false positives. We prioritized a
union of fusion calls as true calls if the fused genes were detected by both callers, the same fusion
was recurrent within a broad histology grouping (> 2 samples), or the fusion was speci�c to the given
broad histology. If either 5’ or 3’ genes fused to more than �ve di�erent genes within a sample, we
removed these calls as potential false positives. We annotated putative driver fusions and prioritized
fusions based on partners containing known kinases, oncogenes, tumor suppressors, curated
transcription factors124, COSMIC genes, and/or known TCGA fusions from curated references. Based
on pediatric cancer literature review, we added MYBL1125, SNCAIP126, FOXR2127, TTYH1128, and
TERT129–132 to the oncogene list, and we added BCOR127 and QKI133 to the tumor suppressor gene
list.

Oncoprint �gure generation ( oncoprint-landscape  analysis module)
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We used Maftools 113 to generate oncoprints depicting the frequencies of canonical somatic gene
mutations, CNVs, and fusions for the top 20 genes mutated across primary tumors within broad
histologies of the OpenPBTA dataset. We collated canonical genes from the literature for low-grade
gliomas (LGGs)25, embryonal tumors26,28,29,134,135, high-grade gliomas (HGGs)14,31,32,136, and other
tumors: ependymomas, craniopharyngiomas, neuronal-glial mixed tumors, histiocytic tumors,
chordoma, meningioma, and choroid plexus tumors33,137–145.

Mutational Signatures ( mutational-signatures  analysis module)

We obtained weights (i.e., exposures) for signature sets using the deconstructSigs  R package
function whichSignatures() 146 from consensus SNVs with the BSgenome.Hsapiens.UCSC.hg38
annotations (see Key Resources Table). Speci�cally, we estimated signature weights across samples
for eight signatures previously identi�ed in the Signal reference set of signatures (“RefSig”) as
associated with adult central nervous system (CNS) tumors41. These eight RefSig signatures are 1, 3, 8,
11, 18, 19, N6, and MMR2. Weights for signatures fall in the range zero to one inclusive. 
deconstructSigs  estimates the weights for each signature across samples and allows for a

proportion of unassigned weights referred to as “Other” in the text. These results do not include
signatures with small contributions; deconstructSigs  drops signature weights that are less than
6%146. We plotted mutational signatures for patients with hypermutant tumors (Figure 4E) using the
R package ComplexHeatmap 117.

Tumor Mutation Burden ( snv-callers  analysis module)

We consider tumor mutation burden (TMB) to be the number of consensus SNVs per e�ectively
surveyed base of the genome. We considered base pairs to be e�ectively surveyed if they were in the
intersection of the genomic ranges considered by the callers used to generate the consensus and
where appropriate, regions of interest, such as coding sequences. We calculated TMB as:

We used the total number coding sequence consensus SNVs for the numerator and the size of the
intersection of the regions considered by Strelka2  and Mutect2  with coding regions (CDS from
GENCODE v27 annotation, see Key Resources Table) as the denominator.

Clinical Data Harmonization

WHO Classi�cation of Disease Types

Table S1 contains a README, along with sample technical, clinical, and additional metadata used for
this study.

Molecular Subtyping

We performed molecular subtyping on tumors in the OpenPBTA to the extent possible. The 
molecular_subtype  �eld in pbta-histologies.tsv  contains molecular subtypes for tumor

types selected from pathology_diagnosis  and pathology_free_text_diagnosis  �elds as
described below, following World Health Organization 2016 classi�cation criteria20. We further
categorized broad tumor histologies into smaller groupings we denote “cancer groups.”

TMB =
# of coding sequence SNVs

Size in Mb of effectively surveyed genome



Medulloblastoma (MB) subtypes SHH, WNT, Group 3, and Group 4 were predicted using the
consensus of two RNA expression classi�ers: MedulloClassifier 22 and MM2S 23 on the RSEM
FPKM data ( molecular-subtyping-MB  analysis module). The 43 “true positive” subtypes were
manually curated from pathology reports by two independent reviewers.

High-grade glioma (HGG) subtypes were derived ( molecular-subtyping-HGG  analysis module)
using the following criteria:

1. If any sample contained an H3F3A p.K28M, HIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C
p.K28M mutation and no BRAF p.V600E mutation, it was subtyped as DMG, H3 K28 .

2. If any sample contained an HIST1H3B p.K28M, HIST1H3C p.K28M, or HIST2H3C p.K28M mutation
and a BRAF p.V600E mutation, it was subtyped as DMG, H3 K28, BRAF V600E .

3. If any sample contained an H3F3A p.G35V or p.G35R mutation, it was subtyped as HGG, H3 G35 .
4. If any high-grade glioma sample contained an IDH1 p.R132 mutation, it was subtyped as HGG, 
IDH .

5. If a sample was initially classi�ed as HGG, had no de�ning histone mutations, and a BRAF p.V600E
mutation, it was subtyped as BRAF V600E .

6. All other high-grade glioma samples that did not meet any of these criteria were subtyped as HGG, 
H3 wildtype .

Embryonal tumors were included in non-MB and non-ATRT embryonal tumor subtyping ( molecular-
subtyping-embryonal  analysis module) if they met any of the following criteria:

1. A TTYH1 (5’ partner) fusion was detected.
2. A MN1 (5’ partner) fusion was detected, with the exception of MN1::PATZ1  since it is an entity

separate of CNS HGNET-MN1 tumors147.
3. Pathology diagnoses included “Supratentorial or Spinal Cord PNET” or “Embryonal Tumor with

Multilayered Rosettes”.
4. A pathology diagnosis of “Neuroblastoma”, where the tumor was not indicated to be peripheral or

metastatic and was located in the CNS.
5. Any sample with “embryonal tumor with multilayer rosettes, ros (who grade iv)”, “embryonal tumor,

nos, congenital type”, “ependymoblastoma” or “medulloepithelioma” in pathology free text.

Non-MB and non-ATRT embryonal tumors identi�ed with the above criteria were further subtyped
( molecular-subtyping-embryonal  analysis module) using the criteria below148–151.

1. Any RNA-seq biospecimen with LIN28A overexpression, plus a TYH1 fusion (5’ partner) with a gene
adjacent or within the C19MC miRNA cluster and/or copy number ampli�cation of the C19MC
region was subtyped as ETMR, C19MC-altered  (Embryonal tumor with multilayer rosettes,
chromosome 19 miRNA cluster altered)128,152.

2. Any RNA-seq biospecimen with LIN28A overexpression, a TTYH1 fusion (5’ partner) with a gene
adjacent or within the C19MC miRNA cluster but no evidence of copy number ampli�cation of the
C19MC region was subtyped as ETMR, NOS  (Embryonal tumor with multilayer rosettes, not
otherwise speci�ed)128,152.

3. Any RNA-seq biospecimen with a fusion having a 5’ MN1 and 3’ BEND2 or CXXC5 partner were
subtyped as CNS HGNET-MN1  [Central nervous system (CNS) high-grade neuroepithelial tumor
with MN1 alteration].

4. Non-MB and non-ATRT embryonal tumors with internal tandem duplication (as de�ned in153) of
BCOR were subtyped as CNS HGNET-BCOR  (CNS high-grade neuroepithelial tumor with BCOR
alteration).

5. Non-MB and non-ATRT embryonal tumors with over-expression and/or gene fusions in FOXR2 were
subtyped as CNS NB-FOXR2  (CNS neuroblastoma with FOXR2 activation).



6. Non-MB and non-ATRT embryonal tumors with CIC::NUTM1 or other CIC fusions, were subtyped as 
CNS EFT-CIC  (CNS Ewing sarcoma family tumor with CIC alteration)127

7. Non-MB and non-ATRT embryonal tumors that did not �t any of the above categories were
subtyped as CNS Embryonal, NOS  (CNS Embryonal tumor, not otherwise speci�ed).

Neurocytoma subtypes central neurocytoma (CNC) and extraventricular neurocytoma (EVN) were
assigned ( molecular-subtyping-neurocytoma  analysis module) based on the primary site of the
tumor154. If the tumor’s primary site was “ventricles,” we assigned the subtype as CNC; otherwise, we
assigned the subtype as EVN.

Craniopharyngiomas (CRANIO) were subtyped ( molecular-subtyping-CRANIO  analysis module)
into adamantinomatous ( CRANIO, ADAM ), papillary ( CRANIO, PAP ) or undetermined ( CRANIO, To 
be classified ) based on the following criteria155,156:

1. Craniopharyngiomas from patients over 40 years old with a BRAF p.V600E mutation were subtyped
as CRANIO, PAP .

2. Craniopharyngiomas from patients younger than 40 years old with mutations in exon 3 of CTNNB1
were subtyped as CRANIO, ADAM .

3. Craniopharyngiomas that did not fall into the above two categories were subtyped as CRANIO, To 
be classified .

A molecular subtype of EWS  was assigned to any tumor with a EWSR1 fusion or with a 
pathology_diagnosis  of Ewings Sarcoma  ( molecular-subtyping-EWS  analysis module).

LGG or glialneuronal tumors (GNT) were subtyped ( molecular-subtyping-LGAT  analysis module)
based on SNV, fusion, and CNV status based on21 and as described below.

1. If a sample contained a NF1 somatic mutation, either nonsense or missense, it was subtyped as 
LGG, NF1-somatic .

2. If a sample contained NF1 germline mutation, as indicated by a patient having the
neuro�bromatosis cancer predisposition, it was subtyped as LGG, NF1-germline .

3. If a sample contained the IDH p.R132 mutation, it was subtyped as LGG, IDH .
4. If a sample contained a histone p.K28M mutation in either H3F3A, H3F3B, HIST1H3B, HIST1H3C, or

HIST2H3C, or if it contained a p.G35R or p.G35V mutation in H3F3A, it was subtyped as LGG, H3 .
5. If a sample contained BRAF p.V600E or any other non-canonical BRAF mutations in the kinase

(PK_Tyr_Ser-Thr) domain PF07714 (see Key Resources Table), it was subtyped as LGG, BRAF 
V600E .

6. If a sample contained KIAA1549::BRAF  fusion, it was subtyped as LGG, KIAA1549::BRAF .
7. If a sample contained SNV or indel in either KRAS, NRAS, HRAS, MAP2K1, MAP2K2, MAP2K1, ARAF,

RAF1, or non-kinase domain of BRAF, or if it contained RAF1 fusion, or BRAF fusion that was not 
KIAA1549::BRAF , it was subtyped as LGG, other MAPK .

8. If a sample contained SNV in either MET, KIT or PDGFRA, or if it contained fusion in ALK, ROS1,
NTRK1, NTRK2, NTRK3 or PDGFRA, it was subtyped as LGG, RTK .

9. If a sample contained FGFR1 p.N546K, p.K656E, p.N577, or p. K687 hotspot mutations, or tyrosine
kinase domain tandem duplication (See Key Resources Table), or FGFR1 or FGFR2 fusions, it was
subtyped as LGG, FGFR .

10. If a sample contained MYB or MYBL1 fusion, it was subtyped as LGG, MYB/MYBL1 .
11. If a sample contained focal CDKN2A and/or CDKN2B deletion, it was subtyped as LGG, 

CDKN2A/B .

For LGG tumors that did not have any of the above molecular alterations, if both RNA and DNA
samples were available, it was subtyped as LGG, wildtype . Otherwise, if either RNA or DNA sample



was unavailable, it was subtyped as LGG, To be classified .

If pathology diagnosis was Subependymal Giant Cell Astrocytoma (SEGA) , the LGG  portion
of molecular subtype was recoded to SEGA .

Lastly, for all LGG- and GNT- subtyped samples, if the tumors were glialneuronal in origin, based on 
pathology_free_text_diagnosis  entries of desmoplastic infantile , desmoplastic 
infantile ganglioglioma , desmoplastic infantile astrocytoma  or glioneuronal , each
was recoded as follows: If pathology diagnosis is Low-grade glioma/astrocytoma (WHO grade 
I/II)  or Ganglioglioma , the LGG  portion of the molecular subtype was recoded to GNT .

Ependymomas (EPN) were subtyped ( molecular-subtyping-EPN  analysis module) into EPN, ST 
RELA , EPN, ST YAP1 , EPN, PF A  and EPN, PF B  based on evidence for these molecular
subgroups as described in Pajtler et al.138. Brie�y, fusion, CNV and gene expression data were used to
subtype EPN as follows:

1. Any tumor with fusions containing RELA  as fusion partner, e.g., C11orf95::RELA , 
LTBP3::RELA , was subtyped as EPN, ST RELA .

2. Any tumor with fusions containing YAP1  as fusion partner, such as C11orf95::YAP1 , 
YAP1::MAMLD1  and YAP1::FAM118B , was subtyped as EPN, ST YAP1 .

3. Any tumor with the following molecular characterization would be subtyped as EPN, PF A :

CXorf67 expression z-score of over 3
TKTL1 expression z-score of over 3 and 1q gain

4. Any tumor with the following molecular characterization would be subtyped as EPN, PF B :

GPBP17 expression z-score of over 3 and loss of 6q or 6p
IFT46 expression z-score of over 3 and loss of 6q or 6p

Any tumor with the above molecular characteristics would be exclusively subtyped to the designated
group.

For all other remaining EPN tumors without above molecular characteristics, they would be subtyped
to EPN, ST RELA  and EPN, ST YAP1  in a non-exclusive way (e.g., a tumor could have both EPN, 
ST RELA  and EPN, ST YAP1  subtypes) if any of the following alterations were present.

1. Any tumor with the following alterations was assigned EPN, ST RELA :

PTEN::TAS2R1  fusion
chromosome 9 arm (9p or 9q) loss
RELA expression z-score of over 3
L1CAM expression z-score of over 3

2. Any tumor with the following alterations was assigned EPN, ST YAP1 :

C11orf95::MAML2  fusion
chromosome 11 short arm (11p) loss
chromosome 11 long arm (11q) gain
ARL4D expression z-score of over 3
CLDN1 expression z-score of over 3



After all relevant tumor samples were subtyped by the above molecular subtyping modules, the
results from these modules, along with other clinical information (such as pathology diagnosis free
text), were compiled in the molecular-subtyping-pathology  module and integrated into the
OpenPBTA data in the molecular-subtyping-integrate  module.

TP53 Alteration Annotation ( tp53_nf1_score  analysis module)

We annotated TP53 altered HGG samples as either TP53 lost  or TP53 activated  and integrated
this within the molecular subtype. To this end, we applied a TP53 inactivation classi�er originally
trained on TCGA pan-cancer data43 to the matched RNA expression data, with samples batched by
library type. Along with the TP53 classi�er scores, we collectively used consensus SNV and CNV, SV,
and reference databases that list TP53 hotspot mutations157,158 and functional domains159 to
determine TP53 alteration status for each sample. We adopted the following rules for calling either 
TP53 lost  or TP53 activated :

1. If a sample had either of the two well-characterized TP53 gain-of-function mutations, p.R273C or
p.R248W44, we assigned TP53 activated  status.

2. Samples were annotated as TP53 lost  if they contained i) a TP53 hotspot mutation as de�ned by
IARC TP53 database or the MSKCC cancer hotspots database157,158 (see also, Key Resources
Table), ii) two TP53 alterations, including SNV, CNV or SV, indicative of probable bi-allelic
alterations; iii) one TP53 somatic alteration, including SNV, CNV, or SV or a germline TP53 mutation
indicated by the diagnosis of Li-Fraumeni syndrome (LFS)160, or iv) one germline TP53 mutation
indicated by LFS and the TP53 classi�er score for matched RNA-Seq was greater than 0.5.

Prediction of participants’ genetic sex

Participant metadata included a reported gender. We used WGS germline data, in concert with the
reported gender, to predict participant genetic sex so that we could identify sexually dimorphic
outcomes. This analysis may also indicate samples that may have been contaminated. We used the 
idxstats  utility from SAMtools 161 to calculate read lengths, the number of mapped reads, and

the corresponding chromosomal location for reads to the X and Y chromosomes. We used the fraction
of total normalized X and Y chromosome reads that were attributed to the Y chromosome as a
summary statistic. We manually reviewed this statistic in the context of reported gender and
determined that a threshold of less than 0.2 clearly delineated female samples. We marked fractions
greater than 0.4 as predicted males, and we marked samples with values in the inclusive range 0.2-0.4
as unknown. We performed this analysis through CWL on CAVATICA. We added resulting calls to the
histologies �le under the column header germline_sex_estimate .

Selection of independent samples ( independent-samples  analysis module)

Certain analyses required that we select only a single representative specimen for each individual. In
these cases, we identi�ed a single specimen by prioritizing primary tumors and those with whole-
genome sequencing available. If this �ltering still resulted in multiple specimens, we randomly
selected a single specimen from the remaining set.

Quanti�cation of Telomerase Activity using Gene Expression Data
( telomerase-activity-prediction  analysis module)

We predicted telomerase activity of tumor samples using the recently developed EXTEND  method45,
with samples batched by library type. Brie�y, EXTEND  estimates telomerase activity based on the

https://github.com/d3b-center/sex-determination-tool


expression of a 13-gene signature. We derived this signature by comparing telomerase-positive
tumors and tumors with activated alternative lengthening of telomeres pathway, a group presumably
negative of telomerase activity.

Survival models ( survival-analysis  analysis module)

We calculated overall survival (OS) as days since initial diagnosis and performed several survival
analyses on the OpenPBTA cohort using the survival  R package. We performed survival analysis
for patients by HGG subtype using the Kaplan-Meier estimator162 and a log-rank test (Mantel-Cox
test)163 on the di�erent HGG subtypes. Next, we used multivariate Cox (proportional hazards)
regression analysis164 to model the following: a) tp53 scores + telomerase scores + extent 
of tumor resection + LGG group + HGG group , in which tp53 scores  and telomerase 
scores  are numeric, extent of tumor resection  is categorical, and LGG group  and HGG 
group  are binary variables indicating whether the sample is in either broad histology grouping, b) 
tp53 scores + telomerase scores + extent of tumor resection  for each 
cancer_group  with an N>=3 deceased patients (DIPG, DMG, HGG, MB, and EPN), and c) quantiseq 
cell type fractions + CD274 expression + extent of tumor resection  for each 
cancer_group  with an N>=3 deceased patients (DIPG, DMG, HGG, MB, and EPN), in which 
quantiseq cell type fractions  and CD274 expression  are numeric.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides,
and recombinant
proteins

Recover Cell Culture
Freezing media Gibco Cat# 12648010

Hank’s Balanced Salt
Solution (HBSS) Gibco Cat# 14175095

Papain SciQuest Cat# LS003124

Ovomucoid SciQuest Cat# 542000

DNase Roche Cat# 10104159001

RNase A Qiagen Cat# 19101

100μm cell strainer Greiner Bio-One Cat# 542000

DMEM/F-12 medium Sigma Cat# D8062

Fetal Bovine Serum (FBS) Hyclone Cat# SH30910.03

GlutaMAX Gibco Cat# 35050061

Penicillin/Streptomycin-
Amphotericin B Lonza Cat# 17-745E

Normocin Invivogen Cat# ant-nr-2

B-27 supplement minus
vitamin A Gibco Cat# 12587-010

N-2 supplement Gibco Cat# 17502001

Epidermal growth factor Gibco Cat# PHG0311L

https://cran.r-project.org/package=survival


REAGENT or RESOURCE SOURCE IDENTIFIER

Basic �broblast growth
factor PeproTech Cat# 100-18B

Heparin Sigma Cat# H3149

Critical commercial
assays

GenePrint 24 STR
pro�ling kit Promega Cat# B1870

DNA/RNA AllPrep Kit Qiagen Cat# 80204

TruSeq RNA Sample
Prep Kit Illumina Cat# FC-122-1001

KAPA Library
Preparation Kit Roche Cat# KK8201

AllPrep DNA/RNA/miRNA
Universal kit Qiagen Cat# 80224

QIAsymphony DSP DNA
Midi Kit Qiagen Cat# 937255

KAPA HyperPrep kit Roche Cat# 08098107702

RiboErase kit Roche Cat# 07962304001

Deposited data

Raw and harmonized
WGS, WXS, Panel, RNA-
Seq

KidsFirst Data Resource
Center, This project

80

Merged summary �les This project https://cavatica.sbgenomics.com/u/cavatica/openpbta

Merged summary �les
and downstream
analyses

This project https://github.com/AlexsLemonade/OpenPBTA-analysis165

Processed data This project https://pedcbioportal.kids�rstdrc.org/study/summary?
id=openpbta

Data underlying �gures
and molecular
alterations

This project 166

Experimental models:
Cell lines

CBTN pediatric brain
tumor-derived cell lines

13 See Table S1 for identi�ers

Software and
algorithms

Data processing and
analysis software Multiple See Table S5 for identi�ers

OpenPBTA work�ows
repository This project https://github.com/d3b-center/OpenPBTA-work�ows167

OpenPBTA analysis
repository This project https://github.com/AlexsLemonade/OpenPBTA-analysis168



REAGENT or RESOURCE SOURCE IDENTIFIER

OpenPBTA manuscript
repository This project https://github.com/AlexsLemonade/OpenPBTA-manuscript

Other

TCGA WXS dataset NIH The Cancer Genome
Atlas (TCGA) dbGAP phs000178.v11.p8

Cancer hotspots MSKCC https://www.cancerhotspots.org/#/download (v2)

Reference genomes Broad Institute https://s3.console.aws.amazon.com/s3/buckets/broad-
references/hg38/v0/

Reference genome hg38,
patch release 12 UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/

Human Cytoband �le UCSC http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cyt
oBand.txt.gz

CDS from GENCODE v27
annotation GENCODE https://www.gencodegenes.org/human/release_27.html

PFAM domains and
locations UCSC http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfa

mDesc.txt.gz; https://pfam.xfam.org/family/PF07714

BSgenome.Hsapiens.UC
SC.hg38 annotations Bioconductor https://bioconductor.org/packages/release/data/annotation/ht

ml/BSgenome.Hsapiens.UCSC.hg38.html

gnomAD v2.1.1 (exome
and genome)

Genome Aggregation
Database

https://gnomad.broadinstitute.org/downloads#v2-liftover-
variants

KEGG MMR gene set
v7.5.1 Broad Institute

https://www.gsea-
msigdb.org/gsea/msigdb/download_geneset.jsp?
geneSetName=KEGG_MISMATCH_REPAIR

ClinVar Database (2022-
05-07) NCBI https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0

/2022/clinvar_20220507.vcf.gz

Supplemental Information Titles and Legends



Figure S1:  OpenPBTA Project Work�ow, Related to Figure 1. Biospecimens and data were collected by CBTN and
PNOC. Genomic sequencing and harmonization (orange boxes) were performed by the Kids First Data Resource Center
(KFDRC). Analyses in the green boxes were performed by contributors of the OpenPBTA project. Output �les are
denoted in blue. Figure created with BioRender.com.

file:///converted/biorender.com


Figure S2:  Validation of Consensus SNV calls and Tumor Mutation Burden, Related to Figures 2 and 3. Correlation
(A) and violin (B) plots of mutation variant allele frequencies (VAFs) comparing the variant callers (Lancet, Strelka2,
Mutect2, and VarDict) used for PBTA samples. UpSet plot (C) showing overlap of variant calls. Correlation (D) and violin
(E) plots of mutation variant allele frequencies (VAFs) comparing the variant callers (Lancet, Strelka2, and Mutect2) used
for TCGA samples. UpSet plot (F) showing overlap of variant calls. Violin plots (G) showing VAFs for Lancet calls
performed on WGS and WXS from the same tumor (N = 52 samples from 13 patients). Cumulative distribution TMB plots
for PBTA (H) and TCGA (I) tumors using consensus SNV calls.



Figure S3:  Genomic instability of pediatric brain tumors, Related to Figures 2 and 3. (A) Violin plots of tumor purity
by cancer group. Dots represent the group median. (B) Oncoprint of canonical somatic gene mutations, CNVs, fusions,
and TMB (top bar plot) for the top mutated genes across rare CNS tumors: desmoplastic infantile astrocytoma and
ganglioglioma (N = 2), germinoma (N = 4), glial-neuronal NOS (N = 8), metastatic secondary tumors (N = 2), neurocytoma



(N = 2), pineoblastoma (N = 4), Rosai-Dorfman disease (N = 2), and sarcomas (N = 4). Patient sex ( Germline sex 
estimate ) and tumor histology ( Cancer Group ) are displayed as annotations at the bottom of each plot. Multiple
CNVs are denoted as a complex event. N denotes the number of unique tumors with one tumor per patient used. (C)
Genome-wide plot of CNV alterations by broad histology. Each row represents one sample. Box and whisker plots of
number of CNV breaks (D) or SV breaks (E) by number of chromothripsis regions. Box plot represents 5% (lower
whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.



Figure S4:  Mutational signatures in pediatric brain tumors, Related to Figure 3. (A) Sample-speci�c RefSig
signature weights across cancer groups ordered by decreasing Signature 1 exposure. (B) Proportion of Signature 1
plotted by phase of therapy for each cancer group.

Figure S5:  Quality control metrics for TP53 and EXTEND scores, Related to Figure 4. (A) Receiver Operating
Characteristic for TP53 classi�er run on FPKM of poly-A RNA-Seq samples. Correlation plots for telomerase scores
(EXTEND) with RNA expression of TERT (B) and TERC (C). Red dots in B and C denote samples with known TERT promoter
(TERTp) mutations.

Figure S6:  Subtype-speci�c clustering and immune cell fractions, Related to Figure 5. First two dimensions from
UMAP of sample transcriptome data with points colored by molecular_subtype  for medulloblastoma (A),
ependymoma (B), low-grade glioma (C), and high-grade glioma (D). (E) Box plots of quanTIseq estimates of immune cell
fractions in histologies with more than one molecular subtype with N >=3. (F) Box plots of the ratio of immune cell
fractions of CD8+ to CD4+ T cells in histologies with more than one molecular subtype with N >=3. Box plot represents
5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker) quantiles.



Figure S7:  RNA batch and tumor purity assessment, Related to Figures 4 and 5. Bar plot (A) and UMAP (B) of RNA-
Seq samples by cancer group and library preparation method. (C) UMAP of RNA-Seq samples by cancer group and
sequencing center. For (D-I), RNA-Seq samples were thresholded by median cancer group tumor purity and
transcriptomic analyses in Figure 4A-D (D-G) and Figure 5A,C (H-I) were repeated.

Table S1. Related to Figure 1. Table of specimens and associated metadata, clinical data, and
histological data utilized in the OpenPBTA project.

Table S2. Related to Figures 2 and 3. Excel �le with four sheets, where the �rst three represent
tables of TMB, eight CNS mutational signatures, and chromothripsis events per sample, respectively,
and the fourth sheet shows summarized genomic alterations across cancer groups.

Table S3. Related to Figures 4 and 5. Excel �le with three sheets representing tables of TP53 scores,
telomerase EXTEND scores, and quanTIseq immune scores, respectively.

Table S4. Related to Figures 4 and 5. Excel �le with six sheets representing the survival analyses
performed for this manuscript. See Star Methods for details.

Table S5. Related to Figure 1. Excel �le with four sheets representing of all software and their
respective versions used for the OpenPBTA project, including the R packages in the OpenPBTA Docker
image, Python packages i the OpenPBTA Docker image, other command line tools in the OpenPBTA
Docker image, and all software used in the OpenPBTA work�ows, respectively. Note that all software
in the OpenPBTA Docker image was utilized within the analysis repository, but not all software was
used for the �nal manuscript.

Consortia

https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/c8d07b36d0a2b4b36008312eca50604a47903cf9/tables/results/TableS1-histologies.xlsx
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/c8d07b36d0a2b4b36008312eca50604a47903cf9/tables/results/TableS2-DNA-results-table.xlsx
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/c8d07b36d0a2b4b36008312eca50604a47903cf9/tables/results/TableS3-RNA-results-table.xlsx
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/c8d07b36d0a2b4b36008312eca50604a47903cf9/tables/results/TableS4-survival-results-table.xlsx
https://github.com/AlexsLemonade/OpenPBTA-analysis/blob/c8d07b36d0a2b4b36008312eca50604a47903cf9/tables/results/TableS5-Key-Resources-table.xlsx
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