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Abstract

The Single-cell Pediatric Cancer Atlas (ScPCA) Portal (https://scpca.alexslemonade.org/) is a data
resource for uniformly processed single-cell and single-nuclei RNA sequencing (RNA-seq) data and de-
identi�ed metadata from pediatric tumor samples. Originally comprised of data from 10 projects
funded by Alex’s Lemonade Stand Foundation, the Portal currently contains summarized gene
expression data for over 500 samples from over 50 types of cancers from ALSF-funded and
community-contributed datasets. In addition to gene expression data from single-cell and single-
nuclei RNA-seq, the Portal holds data obtained from bulk RNA-seq, spatial transcriptomics, and
feature barcoding methods, such as CITE-seq and cell hashing.

ScPCA data are available for download as SingleCellExperiment  or AnnData  objects and are
ready for downstream analyses. Objects include raw counts and normalized gene expression data,
PCA and UMAP coordinates, and automated cell type annotations. Additionally, all downloads include
two summary reports for each library: a quality control report summarizing sample statistics and
displaying visualizations of cell metrics and a cell type annotation report with comparisons among cell
type annotation methods and diagnostic plots to assess annotation quality. Merged 
SingleCellExperiment  and AnnData  objects containing all gene expression data and metadata

for all samples in an ScPCA project are also available for download. These objects are useful when
performing analysis on multiple samples simultaneously. Comprehensive documentation about data
processing and the contents of �les on the Portal, including a guide to getting started working with an
ScPCA dataset, can be found at http://scpca.readthedocs.io.

All data on the Portal were uniformly processed using scpca-nf , an open-source and e�cient
Next�ow work�ow that uses alevin-fry  to quantify all single-cell and single-nuclei RNA-seq data,
any associated CITE-seq or cell hash data, spatial transcriptomics data, and bulk RNA-seq. Any
pediatric cancer-relevant data sets processed with scpca-nf  are eligible for inclusion on the ScPCA
Portal, enabling continuous growth of the ScPCA Portal to help pediatric cancer researchers spend
less time �nding and processing data and more time answering their pressing research questions.

Introduction

Since the introduction of single-cell RNA-seq technology, the number of studies that employ single-cell
RNA-seq has grown rapidly [1]. Unlike its predecessor, bulk RNA-seq, which averages the expression
pro�les of all cells within a sample, single-cell technology quanti�es gene expression in individual
cells. Tumors are known to be transcriptionally heterogeneous, so many studies have highlighted the
importance of using single-cell RNA-seq in studying tumor samples [2]. Researchers can use single-cell
RNA-seq of samples obtained from patient tumors to analyze and identify individual cell populations
that may play important roles in tumor growth, resistance, and metastasis [3]. Additionally, single-cell
RNA-seq data provides insight into how tumor cells interact with normal cells in the tumor
microenvironment [4].

With the growing number of single-cell RNA-seq datasets, e�orts have emerged to create central,
harmonized sources for datasets. Harmonized data resources allow researchers to leverage more
samples from various biological contexts to complete their analysis and elucidate previously unknown
similarities across samples and disease types. The Human Cell Atlas (HCA) and Human Tumor Atlas
Network (HTAN) are two of many such examples. The HCA, which aims to use single-cell genomics to
provide a comprehensive map of all cell types in the human body [5], contains uniformly processed
single-cell RNA-seq data obtained from normal tissue with few samples derived from diseased tissue.

https://scpca.alexslemonade.org/
http://scpca.readthedocs.io/


The HTAN also hosts a collection of genomic data collected from tumors across multiple cancer types,
including single-cell RNA-seq [6].

Existing resources have focused on making large quantities of harmonized data from normal tissue or
adult tumor samples publicly available, but there are considerably fewer e�orts to harmonize and
distribute data from pediatric tumors. Pediatric cancer is much less common than adult cancer, so the
number of available samples from pediatric tumors is smaller compared to the number of adult
tumors [7] and access to data from pediatric tumors is often limited. Thus, it is imperative to provide
harmonized data from pediatric tumors to all pediatric cancer researchers [8]. To address this unmet
need, Alex’s Lemonade Stand Foundation and the Childhood Cancer Data Lab developed and
maintain the Single-cell Pediatric Cancer Atlas (ScPCA) Portal (https://scpca.alexslemonade.org/), an
open-source data resource for single-cell and single-nuclei RNA-seq data of pediatric tumors.

The ScPCA Portal holds uniformly processed summarized gene expression from 10x Genomics
droplet-based single-cell and single-nuclei RNA-seq for over 500 samples from a diverse set of over 50
types of pediatric cancers. Originally comprised of data from ten projects funded by Alex’s Lemonade
Stand Foundation, the Portal has since expanded to include data contributed by pediatric cancer
research community members. In addition to gene expression data from single-cell and single-nuclei
RNA-seq, the Portal includes data obtained from bulk RNA-seq, spatial transcriptomics, and feature
barcoding methods, such as CITE-seq and cell hashing. All data provided on the portal are available in
formats ready for downstream analysis with common work�ow ecosystems such as 
SingleCellExperiment  objects used by R/Bioconductor [9] or AnnData  objects used by 
Scanpy  and related Python modules [10]. Downloaded objects contain normalized gene expression

counts, dimensionality reduction results, and cell type annotations.

To ensure that all current and future data on the Portal are uniformly processed, we created scpca-
nf , an open-source Next�ow [11] pipeline (https://github.com/AlexsLemonade/scpca-nf). Using a
consistent pipeline for all data increases transparency and allows users to perform analysis across
multiple samples and projects without having to do any re-processing. The scpca-nf  work�ow uses 
alevin-fry  [12] for fast and e�cient quanti�cation of single-cell gene expression for all samples on

the Portal, including single-cell RNA-seq data and any associated CITE-seq or cell hash data. The 
scpca-nf  pipeline also serves as a resource for the community, allowing others to process their own

samples for comparison to samples available on the Portal and submit uniformly processed
community contributions to the Portal.

Here, we present the Single-cell Pediatric Cancer Atlas as a resource for all pediatric cancer
researchers. The ScPCA Portal provides downloads ready for immediate use, allowing researchers to
skip time-consuming data re-processing and wrangling steps. We provide comprehensive
documentation about data processing and the contents of �les on the portal, including a guide to
getting started working with an ScPCA dataset (https://scpca.readthedocs.io/). The ScPCA Portal
advances pediatric cancer research by accelerating researchers’ ability to answer important biological
questions.

Results

The Single-cell Pediatric Cancer Atlas Portal

In March of 2022, the Childhood Cancer Data Lab launched the Single-cell Pediatric Cancer Atlas
(ScPCA) Portal to make uniformly processed, summarized single-cell and single-nuclei RNA-seq data
and de-identi�ed metadata from pediatric tumor samples available for download. Data available on
the Portal was obtained using two di�erent mechanisms: raw data was accepted from ALSF-funded

https://scpca.alexslemonade.org/
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investigators and processed using our open-source pipeline scpca-nf , or investigators processed
their raw data using scpca-nf  and submitted the output for inclusion on the Portal.

All samples on the Portal include a core set of metadata obtained from investigators, including age,
sex, diagnosis, subdiagnosis (if applicable), tissue location, and disease stage. Some investigators
submitted additional metadata, such as treatment and tumor stage, which can also be found on the
Portal. All submitted metadata was standardized to maintain consistency across projects before
adding to the Portal. In addition to providing a human-readable value for the submitted metadata, we
also provide ontology term identi�ers, if applicable. Submitted metadata was mapped to associated
ontology term identi�ers obtained from HsapDV (age) [13], PATO (sex) [14,15], NCBI taxonomy
(organism) [16,17], MONDO (disease) [18,19], UBERON (tissue) [20,21,22], and Hancestro (ethnicity, if
applicable) [23,24]. By providing these ontology term identi�ers for each sample, users have access to
standardized metadata terms that facilitate comparisons among datasets within the Portal as well as
to data from other research projects.

The Portal contains data from over 500 samples and over 50 tumor types [25,26,27,28,29,30,31].
Figure 1A summarizes all samples from patient tumors and patient-derived xenografts currently
available on the Portal. The total number of samples for each diagnosis is shown, along with the
proportion of samples from each disease stage within a diagnosis group. The largest number of
samples found on the Portal were obtained from patients with leukemia (n = 191). The Portal also
includes samples from brain and central nervous system tumors (n = 166), sarcoma and soft tissue
tumors (n = 68), and a variety of other solid tumors (n = 86). Most samples were collected at initial
diagnosis (n = 426), with a smaller number of samples collected either at recurrence (n = 67), during
progressive disease (n = 12), or post-mortem (n = 5). Along with the patient tumors, the Portal
contains a small number of human tumor cell line samples (n = 4).

Each of the available samples contains summarized gene expression data from either single-cell or
single-nuclei RNA sequencing. However, some samples also include additional data, such as
quanti�ed expression data from tagging cells with antibody-derived tags (ADT), such as CITE-seq
antibodies [32], or multiplexing samples with hashtag oligonucleotides (HTO) [33] prior to sequencing.
Out of the 518 samples, 96 have associated CITE-seq data, and 19 have associated multiplexing data.
In some cases, multiple libraries from the same sample were collected for additional sequencing,
either for bulk RNA-seq or spatial transcriptomics. Speci�cally, 118 samples on the Portal were
sequenced using bulk RNA-seq and 94 samples were sequenced using spatial transcriptomics. A
summary of the number of samples with each additional modality is shown in Figure 1B, and a
detailed summary of the total samples with each sequencing method broken down by project is
available in Table S1.

Samples on the Portal are organized by project, where each project is a collection of similar samples
from an individual lab. Users can �lter projects based on diagnosis, included modalities (e.g., CITE-seq,
bulk RNA-seq), 10x Genomics kit version (e.g., 10Xv2, 10Xv3), and whether or not a project includes
samples derived from patient-derived xenografts or cell lines. The project card displays an abstract,
the total number of samples included, a list of diagnoses for all samples included in the Project, and
links to any external information associated with the project, such as publications and links to
external data, such as SRA or GEO (Figure 1C). The project card also indicates the type(s) of
sequencing performed, including the 10x Genomics kit version, the suspension type (cell or nucleus),
and if additional sequencing is present, like bulk RNA-seq or multiplexing.

Uniform processing of data available on the ScPCA Portal

We developed scpca-nf , an open-source and e�cient Next�ow [11] work�ow for quantifying single-
cell and single-nuclei RNA-seq data and processed all data available on the Portal with it. Using

https://github.com/AlexsLemonade/scpca-nf


Next�ow as the backbone for the scpca-nf  work�ow ensures both reproducibility and portability.
All dependencies for the work�ow are handled automatically, as each process in the work�ow is run
in a Docker container. Next�ow is compatible with various computing environments, including high-
performance computing clusters and cloud-based computing, allowing users to run the work�ow in
their preferred environment. Setup requires organizing input �les and updating a single con�guration
�le for the computing environment after installing Next�ow and either Docker or Singularity. Next�ow
will also handle parallelizing sample processing as allowed by the environment, minimizing run time.
The combination of being able to execute a Next�ow work�ow in any environment and run individual
processes in Docker containers makes this work�ow easily portable for external use.

When building scpca-nf , we sought a fast and memory-e�cient tool for gene expression
quanti�cation to minimize processing costs. We expected many users of the Portal to have their own
single-cell or single-nuclei data processed with Cell Ranger [34,35], due to its popularity. Thus,
selecting a tool with comparable results to Cell Ranger was also desirable. In comparing alevin-fry
[12] to Cell Ranger, we found alevin-fry  had a lower run time and memory usage (Figure S1A),
while retaining comparable mean gene expression for all genes (Figure S1B), total UMIs per cell
(Figure S1C), and total genes detected per cell (Figure S1D). (All analyses comparing gene expression
quanti�cation tools are available in a public analysis repository [36].) Based on these results, we
elected to use salmon alevin  and alevin-fry  [12] in scpca-nf  to quantify gene expression
data.

scpca-nf  takes FASTQ �les as input (Figure 2A). Reads are aligned using the selective alignment
option in salmon alevin  to an index with transcripts corresponding to spliced cDNA and intronic
regions, denoted by alevin-fry  as a splici  index. The output from alevin-fry  includes a
gene by cell count matrix for all barcodes identi�ed, even those that may not contain true cells. This
un�ltered counts matrix is stored in a SingleCellExperiment  object [9] and output from the
work�ow as a �le with the su�x _unfiltered.rds .

scpca-nf  performs �ltering of empty droplets, removal of low-quality cells, normalization,
dimensionality reduction, and cell type annotation (Figure 2A). The un�ltered gene by cell counts
matrices are �ltered to remove any barcodes that are not likely to contain cells using 
DropletUtils::emptyDropsCellRanger() [37], and all cells that pass are saved in a 
SingleCellExperiment  object and a �le with the su�x _filtered.rds . Low-quality cells are

identi�ed and removed with miQC  [38], which jointly models the proportion of mitochondrial reads
and detected genes per cell and calculates a probability that each cell is compromised. The remaining
cells’ counts are normalized [39], and reduced-dimension representations are calculated using both
principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) [40].
Finally, cell types are classi�ed using two automated methods, SingleR  [41] and CellAssign  [42].
The results from this analysis are stored in a processed SingleCellExperiment  object saved to a
�le with the su�x _processed.rds .

To make downloading from the Portal convenient for R and Python users, downloads are available as
either SingleCellExperiment  or AnnData [43] objects. scpca-nf  converts all 
SingleCellExperiment  objects to AnnData  objects, which are saved as .hdf5  �les (Figure 2A).

Downloads contain the un�ltered, �ltered, and processed objects from scpca-nf  to allow users to
choose to perform their own �ltering and normalization or to start their analysis from a processed
object.

All downloads from the Portal include a quality control (QC) report with a summary of processing
information (e.g., alevin-fry  version), library statistics (e.g., the total number of cells), and a
collection of diagnostic plots for each library (Figure 2B-G). A knee plot displaying total UMI counts for
all droplets (i.e., including empty droplets) indicates the e�ects of the empty drop �ltering (Figure 2B).



For each cell that remains after �ltering empty droplets, the number of total UMIs, genes detected,
and mitochondrial reads are calculated and summarized in a scatter plot (Figure 2C). We include plots
showing the miQC  model and which cells are kept and removed after �ltering with miQC  (Figure 2D-
E). A UMAP plot with cells colored by the total number of genes detected and a faceted UMAP plot
where cells are colored by the expression of a set of highly variable genes are also provided (Figure
2F-G).

Processing samples with additional modalities

scpca-nf  includes modules for processing samples with sequencing modalities beyond single-cell
or single-nuclei RNA-seq data: corresponding ADT or CITE-seq data [32], multiplexed data via cell
hashing [33], spatial transcriptomics, or bulk RNA-seq.

Antibody-derived tags

To process ADT libraries, the ADT FASTQ �les were provided as input into scpca-nf  and quanti�ed
using salmon alevin  and alevin-fry  (Figure S2A). Along with the FASTQ �les, scpca-nf  takes
a tab-separated values (TSV) �le with one row for each ADT – containing the name used for the ADT
and associated barcode – required to build an ADT-speci�c index for quantifying ADT expression with 
alevin-fry . The output from alevin-fry  is the un�ltered ADT by cell counts matrix. The ADT by

cell counts matrix is read into R alongside the gene by cell counts matrix and saved as an alternative
experiment ( altExp ) within the main SingleCellExperiment  object containing the un�ltered
RNA counts. This SingleCellExperiment  object containing both RNA and ADT counts is output
from the work�ow to a �le with the su�x _unfiltered.rds .

scpca-nf  does not �lter any cells based on ADT expression or remove cells with low-quality ADT
expression. Any cells removed after �ltering empty droplets based on the un�ltered RNA counts
matrix are also removed from the ADT counts matrix. The work�ow calculates QC statistics for ADT
counts using DropletUtils::cleanTagCounts()  that are stored alongside the ADT by cell counts
matrix in the �ltered SingleCellExperiment  object. The SingleCellExperiment  object
containing the �ltered RNA and ADT counts matrix and associated ADT QC statistics is saved to a �le
with the su�x _filtered.rds .

The ADT by cell counts matrix is normalized by �rst determining the ambient pro�le and then using
that pro�le to calculate median size factors with scuttle::computeMedianFactors()  [44,45]. We
skip normalization for cells with low-quality ADT expression, as indicated by 
DropletUtils::cleanTagCounts() . Although scpca-nf  normalizes ADT counts, the work�ow

does not perform any dimensionality reduction of ADT data; only the RNA counts data are used as
input for dimensionality reduction. The normalized ADT data are saved as an altExp  within the
processed SingleCellExperiment  containing the normalized RNA data and is output to a �le with
the su�x _processed.rds . All �les containing SingleCellExperiment  objects and associated 
altExp  objects are converted to AnnData  objects and exported as separate RNA ( _rna.hdf5 )

and ADT ( _adt.hdf5 ) AnnData  objects.

If a library contains associated ADT data, the QC report output by scpca-nf  will include an
additional section with a summary of ADT-related statistics, such as how many cells express each ADT,
and ADT-speci�c diagnostic plots (Figure S2B-D). As mentioned above, scpca-nf  uses 
DropletUtils::cleanTagCounts()  to calculate QC statistics for each cell using ADT expression

but does not �lter any cells from the object. We include plots summarizing the potential e�ects of
removing of low-quality cells based on RNA and ADT counts in the QC report (Figure S2B). The �rst
quadrant indicates which cells would be kept if the object was �ltered using both RNA and ADT quality



measures. The other facets highlight which cells would be removed if �ltering was done using only
RNA counts, only ADT counts, or both. The top four ADTs with the most variable expression are also
identi�ed and visualized using density plots to show the normalized ADT expression across all cells
(Figure S2C) and UMAPs – calculated from RNA data – with cells colored by ADT expression (Figure
S2D).

Multiplexed libraries

To process multiplexed libraries, the HTO FASTQ �les are input to scpca-nf  and quanti�ed using 
salmon alevin  and alevin-fry  (Figure S2C). Along with the FASTQ �les, scpca-nf  requires

two TSV �les to process multiplexed data: one to build an HTO-speci�c index for quantifying HTO
expression with alevin-fry , and a second to indicate which HTO was used for which sample when
multiplexing the library. The un�ltered HTO by cell counts matrix output from alevin-fry  is saved
as an alternative experiment ( altExp ) within the main SingleCellExperiment  containing the
un�ltered RNA counts. This SingleCellExperiment  object containing both RNA and HTO counts is
output from the work�ow to a �le with the su�x _unfiltered.rds .

As with ADT data, scpca-nf  does not �lter any cells based on HTO expression, and any cells
removed after �ltering empty droplets based on the un�ltered RNA counts matrix are also removed
from the HTO counts matrix with the remainder saved to a �le with the _filtered.rds  su�x. 
scpca-nf  does not perform any additional �ltering or processing of the HTO by cell counts matrix,

so the same �ltered matrix is saved to the �le with the _processed.rds  su�x.

Although scpca-nf  quanti�es the HTO data and includes an HTO by cell counts matrix in all objects, 
scpca-nf  does not demultiplex the samples into one sample per library. Instead, scpca-nf

applies multiple demultiplexing methods, including demultiplexing with 
DropletUtils::hashedDrops()  [46], demultiplexing with Seurat::HTODemux()  [33], and

genetic demultiplexing when bulk RNA-seq data are available. scpca-nf  uses the genetic
demultiplexing method described in Weber et al. [47], which uses bulk RNA-seq as a reference for the
expected genotypes found in each single-cell RNA-seq sample. The results from all available
demultiplexing methods are saved in the �ltered and processed SingleCellExperiment  objects.

If a library has associated HTO data, an additional section is included in the scpca-nf  QC report.
This section summarizes HTO-speci�c library statistics, such as how many cells express each HTO. No
additional plots are produced, but a table summarizing the results from all three demultiplexing
methods is included.

Bulk and spatial transcriptomics

Some samples also included data from bulk RNA-seq and/or spatial transcriptomics libraries. Both of
these additional sequencing methods are supported by scpca-nf . To quantify bulk RNA-seq data, 
scpca-nf  takes bulk FASTQ �les as input, trims reads using fastp  [48], and then aligns and

quanti�es reads with salmon  (Figure S3A) [49]. The output is a single TSV �le with the gene by
sample counts matrix for all samples in a given ScPCA project. This gene by sample matrix is only
included with project downloads on the Portal.

To quantify spatial transcriptomics data, scpca-nf  takes the RNA FASTQ and slide image as input
(Figure S3B). As alevin-fry  does not yet fully support spatial transcriptomics data, scpca-nf  uses
Space Ranger to quantify all spatial transcriptomics data [50]. The output includes the spot by gene
matrix along with a summary report produced by Space Ranger.



Downloading projects from the ScPCA Portal

On the Portal, users can select to download data from individual samples or all data from an entire
ScPCA project. When downloading data for an entire project, users can choose between receiving the
individual �les for each sample (default) or one �le containing the gene expression data and metadata
for all samples in the project as a merged object. Users also have the option to choose their desired
format and receive the data as SingleCellExperiment  ( .rds ) or AnnData  ( .hdf5 ) objects.

For downloads with samples as individual �les, the download folder will include a sub-folder for each
sample in the project (Figure 3A). Each sample folder contains all three object types (un�ltered,
�ltered, and processed) in the requested �le format and the QC and cell type summary report for all
libraries from the given sample. The objects house the summarized gene expression data and
associated metadata for the library indicated in the �lename.

All project downloads include a metadata �le, single_cell_metadata.tsv , containing relevant
metadata for all samples, and a README.md  with information about the contents of each download,
contact and citation information, and terms of use for data downloaded from the Portal (Figure 3A-B).
If the ScPCA project includes samples with bulk RNA-seq, two additional �les are included: a gene by
sample counts matrix ( bulk_quant.tsv ) with the quanti�ed gene expression data for all samples in
the project, and a metadata �le ( bulk_metadata.tsv ).

Merged objects

Providing data for all samples within a single �le facilitates performing joint gene-level analyses, such
as di�erential expression or gene set enrichment analyses, on multiple samples simultaneously.
Therefore, we provide a single, merged object for each project containing all raw and normalized gene
expression data and metadata for all single-cell and single-nuclei RNA-seq libraries within a given
ScPCA project. We provide merged objects for all projects in the Portal except for those with
multiplexing, due to potential ambiguity in identifying samples across multiplexed libraries. The data
in the merged object has simply been combined without further processing; no batch-corrected or
integrated data are included. If downloading data from an ScPCA project as a single, merged �le, the
download will include a single .rds  or .hdf5  �le, a summary report for the merged object, and a
folder with all individual QC and cell type reports for each library found in the merged object (Figure
3B).

To build the merged objects, we created an additional stand-alone work�ow for merging the output
from scpca-nf , merge.nf  (Figure 3C). merge.nf  takes as input the processed 
SingleCellExperiment  objects output by scpca-nf  for all single-cell and single-nuclei libraries

included in a given ScPCA project. The gene expression data stored in all SingleCellExperiment
objects are then merged to produce a single merged gene by cell counts matrix containing all cells
from all libraries. The genes available in the merged object will be the same as those in each individual
object, as all objects on the Portal were quanti�ed using the same index. Where possible, library-, cell-
and gene-speci�c metadata found in the individual processed SingleCellExperiment  objects are
also merged. The merged normalized counts matrix is then used to select high-variance genes in a
library-aware manner before performing dimensionality reduction with both PCA and UMAP. 
merge.nf  outputs the merged and processed object as a SingleCellExperiment  object. The

more samples that are included in a merged object, the larger the object, and the more di�cult it is to
work with that object in R or Python. Therefore, we do not provide merged objects for projects with
more than 100 samples.



We also account for additional modalities in merge.nf . If at least one library in a project contains
ADT data, the raw and normalized ADT data are also merged and saved as an altExp  in the merged 
SingleCellExperiment  object. If any libraries in a project are multiplexed, no merged object is

created, as there is no guarantee that a unique HTO was used for each sample in a given project. All
merged SingleCellExperiment  objects are converted to AnnData  objects and exported as 
.hdf5  �les. If the merged object contains an altExp  with merged ADT data, two AnnData  objects

are exported to create separate RNA ( _rna.hdf5 ) and ADT ( _adt.hdf5 ) objects.

merge.nf  outputs a summary report for each merged object, which includes a set of tables
summarizing the types of samples and libraries included in the project, such as types of diagnosis,
and a faceted UMAP showing all cells from all libraries. In the UMAP, each panel represents a di�erent
library included in the merged object, with all cells from the speci�ed library shown in color, while all
other cells are gray. An example of this UMAP showing a subset of libraries from an ScPCA project is
available in Figure 3D.

Annotating cell types

Assigning cell type labels to single-cell and single-nuclei RNA-seq data is often an essential step in
analysis. Cell type annotation requires knowledge of the expected cell types in a dataset and the
associated gene expression patterns for each cell type, which is available in publications or other
public databases for some biological contexts. Automated cell type annotation methods leveraging
public databases are an excellent initial step in the labeling process, as they can be applied
consistently and transparently across all samples in a data set. As such, we include cell type
annotations determined using two di�erent automated methods, SingleR  [41] and CellAssign
[42], in all processed SingleCellExperiment  and AnnData  objects available for download on the
Portal, saving users analysis time.

Annotating cell types with automated methods like SingleR  and CellAssign  requires the use of
previously annotated reference data. For SingleR , this can be in the form of an annotated gene
expression dataset from a microarray, bulk RNA-seq, or single-cell RNA-seq experiment. 
CellAssign  requires a matrix of cell types and expected marker genes. Most public annotated

reference datasets that can be used with these methods – including those we use for the Portal – are
derived from normal tissue, making accurately annotating tumor datasets particularly di�cult.
Because there are limitations to the annotations provided on the Portal, comparing the two methods
and observing consistent cell type annotations across methods can indicate higher con�dence in the
provided labels. For some ScPCA projects, submitters provided their own curated cell type
annotations, including annotation of tumor cells and disease-speci�c cell states. These submitter-
provided annotations can be found in all SingleCellExperiment  and AnnData  objects
(un�ltered, �ltered, and processed).

Choosing cell typing methods and references

SingleR  is a reference-based annotation method that requires an existing bulk or single-cell RNA-
seq dataset with annotations. To identify an appropriate reference to use with  SingleR , we
annotated a small number of samples across multiple disease types with all human-speci�c
references available in the  celldex  package [41]. The output from SingleR  includes a score
matrix containing a score for each cell and all possible cell types found in the reference, where higher
scores are associated with assigned cell types. We calculated the delta median statistic for each cell in
the dataset by subtracting the median score from the score associated with the assigned cell type
label. The delta median statistic helps evaluate how con�dent  SingleR  is in assigning each cell to a
speci�c cell type, where low delta median values indicate ambiguous assignments and high delta



median values indicate con�dent assignments [51]. Using this measure, we found that the 
BlueprintEncodeData  reference [52,53], which includes a variety of normal cell types, tended to

perform better than or at least similarly to other references across samples from di�erent disease
types (Figure S4). Based on these �ndings, we used the BlueprintEncodeData  reference to
annotate cells from all libraries on the Portal, as using a single reference is potentially valuable for
cross-project analyses.

In contrast, CellAssign  is a marker-gene-based annotation method that requires a binary matrix
with all cell types and all associated marker genes as the reference. We used the list of marker genes
available as part of PanglaoDB  [54] to construct organ-speci�c marker gene matrices with marker
genes from all cell types listed for the speci�ed organ. Since many cancers may have in�ltrating
immune cells, all immune cells were also included in each organ-speci�c reference. For each ScPCA
project, we provided the organ-speci�c marker gene matrix relevant to the disease and tissue type
from which the sample was obtained (e.g., for brain tumors, we used a brain-speci�c marker gene
matrix with all brain and immune cell types). If CellAssign  cannot �nd a likely cell type from the
marker gene matrix, it does not assign a cell type. Because we annotate cells from tumor samples
using references containing only normal cells, we anticipate that many cells, particularly the tumor
cells, may not have an exact match; reporting this to the end user is valuable. Indeed, when applying 
CellAssign  to tumor samples with our chosen reference, we observed that many of the cells were

unassigned. We included an example in Figure S5A where unassigned cell types are labeled with 
Unknown . When comparing annotations obtained from CellAssign  to submitter-provided

annotations, we noticed the labels for non-tumor cells are similar between CellAssign  and
submitter annotations, while the tumor cells were not assigned using CellAssign  (Figure S5B).

Adding cell type annotations to the ScPCA Portal

scpca-nf  adds cell type annotations from SingleR  and CellAssign  to all processed 
SingleCellExperiment  objects (Figure 4A). This requires two additional reference �les as input to

the work�ow: a classi�cation model built from a reference dataset for SingleR  and a marker gene
by cell type matrix for CellAssign . SingleR::trainSingleR()  was used to build a classi�cation
model from the provided BlueprintEncodeData  dataset and create the required SingleR  input
for scpca-nf . The classi�cation model and processed SingleCellExperiment  were used as
input for SingleR::classifySingleR() , resulting in annotations for all cells and an associated
score matrix. The score matrix containing a score for all cells and each possible cell type and the
assigned cell types are added to the processed SingleCellExperiment  object output by scpca-
nf . Simultaneously, processed SingleCellExperiment  objects are converted to AnnData  objects
for classi�cation with CellAssign . CellAssign  uses the converted AnnData  object and the
marker gene matrix to train a model and predict the most likely cell type from the possible cell types
in the marker gene matrix. The prediction matrix, which contains a probability that each cell is one of
each possible cell types, and the assigned cell types are added to the processed 
SingleCellExperiment  object output by scpca-nf . The processed SingleCellExperiment

object is then converted to an AnnData  object to ensure cell type annotations are included in both
data formats provided by scpca-nf .

An additional cell type report with information about reference sources, comparisons among cell type
annotation methods, and diagnostic plots is also output by scpca-nf . Tables summarizing the
number of cells assigned to each cell type for each method are shown alongside UMAPs coloring cells
by the assigned cell type. The concordance of cell type annotations assigned between both methods
can indicate higher con�dence in the provided annotations. We therefore used the Jaccard similarity
index to compare annotations between the two methods, as well as submitter-provided annotations,
if available. This index is calculated between pairs of labels from each method and ranges from 0-1,
with a value close to 1 indicating high agreement and a high proportion of overlapping cells and



values close to 0 indicating a low proportion of overlapping cells. The Jaccard similarity index is
displayed in a heatmap, an example of which is shown in Figure 4B.

The report also includes a diagnostic plot evaluating the con�dence of cell type annotations
determined by each method. To evaluate con�dence in SingleR  cell type annotations, the delta
median statistic is calculated by subtracting the median score from the score associated with the
assigned cell type label [51]. The distribution of delta median values for each cell type is shown in the
cell type report, where a higher delta median statistic for a cell indicates higher con�dence in the �nal
cell type annotation (Figure S6A). CellAssign  calculates the probability that each cell belongs to
each possible cell type provided in the reference, and the cell type label with the highest probability is
assigned as the cell type for that cell. These values range from 0 to 1, with larger values indicating
greater con�dence in a given cell type label, so we expect more con�dent labels to have most values
close to 1. An example of the plot included in the report displaying the distribution of all probabilities
for each cell type is shown in Figure S6B.

If the submitter provided cell types, the submitter annotations are compared to the annotations from
both SingleR  and CellAssign . A summary of this comparison is included in the cell type report
along with a table summarizing the submitter cell type annotations and a UMAP plot where each cell
is colored by the submitter annotation. The Jaccard similarity index is calculated for all pairs of cell
type labels in submitter annotations and SingleR  annotations and in submitter annotations and 
CellAssign  annotations. The results from both comparisons are displayed in a stacked heatmap

available in the report, an example of which is shown in Figure S7.

Materials and Methods

Data generation and processing

Raw data and metadata were generated and compiled by each lab and institution contributing to the
Portal. Single-cell or single-nuclei libraries were generated using one of the commercially available kits
from 10x Genomics. For bulk RNA-seq, RNA was collected and sequenced using either paired-end or
single-end sequencing. For spatial transcriptomics, cDNA libraries were generated using the Visium kit
from 10x Genomics. All libraries were processed using our open-source pipeline, scpca-nf , to
produce summarized gene expression data. A detailed summary with the total number of samples
and libraries collected for each sequencing method broken down by project is available in Table S1.

Metadata

Submitters were required to submit the age, sex, organism, diagnosis, subdiagnosis (if applicable),
and tissue of origin for each sample. The submitted metadata was standardized across projects,
including converting all ages to years, removing abbreviations used in diagnosis, subdiagnosis, or
tissue of origin, and using standard values across projects as much as possible for diagnosis,
subdiagnosis, disease timing, and tissue of origin. For example, all samples obtained at diagnosis were
assigned the value Initial diagnosis  for disease timing.

In an e�ort to ensure sample metadata for ScPCA are compatible with CZI’s CELLxGENE, ontology
term identi�ers were assigned to metadata categories for each sample following the guidelines
present in the CELLxGENE schema [55,56], as shown in Table 1.  

Table 1:  Assignment of metadata �elds to ontology terms.



Metadata
�eld

Ontology term description

Age
Ontology term obtained from HsapDv [13]. For ages 0-11 months, the HsapDv for age in months was
used. For ages 12 months and greater, the HsapDv for age in years was used.

Sex
Ontology term obtained from PATO, either male (PATO:0000384), female (PATO:0000383), or unknown
[14,15].

Organism
NCBI taxonomy term for organism. All current samples available on the Portal are from Homo sapiens
or NCBITaxon:9606 [16,17].

Diagnosis
The most appropriate MONDO term based on the provided diagnosis [18,19]. An exact match was
identi�ed for most samples, but in a handful of cases, the most closely related term was used.

Tissue of
origin

The most appropriate UBERON term based on the provided tissue of origin [20,21,22]. An exact match
was identi�ed for most samples, but in a handful of cases, the most closely related term was used.

Ethnicity (if
applicable)

If the submitter provided ethnicity, the associated Hancestro term [23,24]. If ethnicity is unavailable, 
unknown  is used.

Processing single-cell and single-nuclei RNA-seq data with alevin-fry

To quantify RNA-seq gene expression for each cell or nucleus in a library, scpca-nf  uses salmon 
alevin  [57] and alevin-fry [12] to generate a gene by cell counts matrix. Prior to mapping, we
generated an index using transcripts from both spliced cDNA and unspliced cDNA sequences,
denoted as the splici  index [12]. The index was generated from the human genome, GRCh38,
Ensembl version 104. salmon alevin  was run using selective alignment to the splici  index with
the --rad  option to generate a reduced alignment data (RAD) �le required for input to alevin-
fry .

The RAD �le was used as input to the recommended alevin-fry  work�ow, with the following
customizations. At the generate-permit-list  step, we used the --unfiltered-pl  option to
provide a list of expected barcodes speci�c to the 10x kit used to generate each library. The quant
step was run using the cr-like-em  resolution strategy for feature quanti�cation and UMI de-
duplication.

Post alevin-fry processing of single-cell and single-nuclei RNA-seq data

The output from running alevin-fry  includes a gene by cell counts matrix, with reads from both
spliced and unspliced reads for all potential cell barcodes. This output is read into R to create a 
SingleCellExperiment  using fishpond::load_fry() . The resulting SingleCellExperiment

contains a counts  assay with a gene by cell counts matrix where all spliced and unspliced reads for a
given gene are totaled together. We also include a spliced  assay that contains a gene by cell counts
matrix with only spliced reads. These matrices include all potential cells, including empty droplets, and
are provided for all Portal downloads in the un�ltered objects saved as .rds  �les with the 
_unfiltered.rds  su�x.

Each droplet was tested for deviation from the ambient RNA pro�le using 
DropletUtils::emptyDropsCellRanger()  and those with an FDR ≤ 0.01 were retained as likely

cells. If a library did not have a su�cient number of droplets and 
DropletUtils::emptyDropsCellRanger()  failed, cells with fewer than 100 UMIs were removed.

Gene expression data for any cells that remain after �ltering are provided in the �ltered objects saved
as .rds  �les with the _filtered.rds  su�x.



In addition to removing empty droplets, scpca-nf  also removes cells that are likely to be
compromised by damage or low-quality sequencing. miQC  was used to calculate the posterior
probability that each cell is compromised [38]. Any cells with a probability of being compromised
greater than 0.75 and fewer than 200 genes detected were removed before further processing. The
gene expression counts from the remaining cells were log-normalized using the deconvolution
method from Lun, Bach, and Marioni [39]. scran::modelGeneVar()  was used to model gene
variance from the log-normalized counts and scran::getTopHVGs()  was used to select the top
2000 high-variance genes. These were used as input to calculate the top 50 principal components
using scater::runPCA() . Finally, UMAP embeddings were calculated from the principal
components with scater::runUMAP() . The raw and log-normalized counts, list of 2000 high-
variance genes, principal components, and UMAP embeddings are all stored in the processed objects
saved as .rds  �les with the _processed.rds  su�x.

Quantifying gene expression for libraries with CITE-seq or cell hashing

All libraries with antibody-derived tags (ADTs) or hashtag oligonucleotides (HTOs) were mapped to a
reference index using salmon alevin  and quanti�ed using alevin-fry . The reference indices
were constructed using the salmon index  command with the --feature  option. References were
custom-built for each ScPCA project and constructed using the submitter-provided list of ADTs or
HTOs and their barcode sequences.

The ADT by cell or HTO by cell counts matrix produced by alevin-fry  were read into R as a 
SingleCellExperiment  object and saved as an alternative experiment ( altExp ) in the same 
SingleCellExperiment  object with the un�ltered gene expression counts data. The altExp

within the un�ltered object contains all identi�ed ADTs or HTOs and all barcodes identi�ed in the
RNA-seq gene expression data. Any barcodes that only appeared in either ADT or HTO data were
discarded, and cell barcodes that were only found in the gene expression data (i.e., did not appear in
the ADT or HTO data) were assigned zero counts for all ADTs and HTOs. Any cells removed after
�ltering empty droplets were also removed from the ADT and HTO counts matrices and before
creating the �ltered SingleCellExperiment  object.

Processing ADT expression data from CITE-seq

The ADT count matrix stored in the un�ltered object was used to calculate an ambient pro�le with 
DropletUtils::ambientProfileEmpty() . This ambient pro�le was used to calculate quality-

control statistics with DropletUtils::cleanTagCounts()  for all cells remaining after removing
empty droplets. Any negative or isotype controls were taken into account when calculating QC
statistics. Cells with a high level of ambient contamination or negative/isotype controls were �agged
as having low-quality ADT expression, but we did not remove any cells based on ADT quality from the
object. The �ltered and processed objects contain the results from running 
DropletUtils::cleanTagCounts() .

ADT count data were then normalized by calculating median size factors using the ambient pro�le
with scuttle::computeMedianFactors() . If median-based normalization failed for any reason,
ADT counts were log-transformed after adding a pseudocount of 1. Normalized counts are only
available for any cells that would be retained after ADT �ltering, and any cells that would be �ltered
out based on DropletUtils::cleanTagCounts()  are assigned NA . The normalized ADT data are
available in the altExp  of the processed object.

Processing HTO data from multiplexed libraries



To identify which cells come from which samples in a multiplexed library, we applied three di�erent
demultiplexing methods: genetic demultiplexing, HTO demultiplexing using 
DropletUtils::hashedDrops() , and HTO demultiplexing using Seurat::HTODemux() . We do

not provide separate SingleCellExperiment  objects for each sample in a library. Each multiplexed
library object contains the counts data from all samples and the results from all three demultiplexing
methods to allow users to select which method(s) to use.

Genetic demultiplexing

If all samples in a multiplexed library were also sequenced using bulk RNA-seq, we performed genetic
demultiplexing using genotype data from both bulk RNA-seq and single-cell or single-nuclei RNA-seq
[47]. If bulk RNA-seq was not available, no genetic demultiplexing was performed.

Bulk RNA-seq reads for each sample were mapped to a reference genome using STAR  [58], and
multiplexed single-cell or single-nuclei RNA-seq reads were mapped to the same reference genome
using STARsolo [59]. The mapped bulk reads were used to call variants and assign genotypes with 
bcftools mpileup  [60]. cellsnp-lite  was then used to genotype single-cell data at the

identi�ed sites found in the bulk RNA-seq data [61]. Finally, vireo  was used to identify the sample of
origin [61].

HTO demultiplexing

For all multiplexed libraries, we performed demultiplexing using DropletUtils::hashedDrops()
and Seurat::HTODemux() . For both methods, we used the default parameters and only performed
demultiplexing on the �ltered cells present in the �ltered object. The results from both these methods
are available in the �ltered and processed objects.

Quanti�cation of spatial transcriptomics data

10x Genomics’ Space Ranger [50] was used to quantify gene expression data from spatial
transcriptomics libraries. cellranger mkref  was used to create a reference index from the human
genome, GRCh38, Ensembl version 104. The FASTQ �les, microscopic slide image, and slide serial
number were provided as input to spaceranger count . The raw and �ltered counts matrix and the
summary report output by spaceranger count  are included in the folder output from scpca-nf .

Quanti�cation of bulk RNA-seq data

fastp  was used to trim adapters and perform quality and length �ltering on all FASTQ �les from
bulk RNA-seq. We used a decoy-aware reference created from spliced cDNA sequences with the entire
human genome sequence (GRCh38, Ensembl version 104) as the decoy [49]. The trimmed reads were
then provided as input to salmon quant  for selective alignment. In addition to using the default
parameters for salmon quant , we applied the --seqBias  and --gcBias  �ags to correct for
sequence-speci�c biases due to random hexamer priming and fragment-level GC biases, respectively.

Cell type annotation

Cell type labels determined by both SingleR [41] and CellAssign [42] were added to processed 
SingleCellExperiment  objects. If cell types were obtained from the submitter of the dataset, the

submitter-provided annotations were incorporated into all SingleCellExperiment  objects
(un�ltered, �ltered, and processed).



To prepare the references used for assigning cell types, we developed a separate work�ow build-
celltype-index.nf  within scpca-nf . For SingleR , we used the BlueprintEncodeData  from
the celldex  package [52,53] to train the SingleR  classi�cation model with 
SingleR::trainSingleR() . In the main scpca-nf  work�ow, this model and the processed 
SingleCellExperiment  object were input to SingleR::classifySingleR() . The SingleR

output of cell type annotations and a score matrix for each cell and all possible cell types were added
to the processed SingleCellExperiment  object output. To evaluate con�dence in SingleR  cell
type assignments, we also calculated a delta median statistic for each cell by subtracting the median
cell type score from the score associated with the assigned cell type [51].

For CellAssign , marker gene references were created using the marker gene lists available on 
PanglaoDB  [54]. Organ-speci�c references were built using all cell types in a speci�ed organ listed in 
PanglaoDB  to accommodate all ScPCA projects encompassing a variety of disease and tissue types.

If a set of disease types in a given project encompassed cells that may be present in multiple organ
groups, multiple organs were combined. For example, we created a reference containing bone,
connective tissue, smooth muscle, and immune cells for sarcomas that appear in bone or soft tissue.

Given the processed SingleCellExperiment  object and organ-speci�c reference, 
scvi.external.CellAssign  was used in the main scpca-nf  work�ow to train the model and

predict the assigned cell type. For each cell, CellAssign  calculates a probability of assignment to
each cell type in the reference. The probability matrix and a prediction based on the most probable
cell type were added as cell type annotations to the processed SingleCellExperiment  object
output.

Generating merged data

Merged objects are created with the merge.nf  work�ow within scpca-nf . This work�ow takes as
input the processed SingleCellExperiment  objects in a given ScPCA project output by scpca-nf
and creates a single merged SingleCellExperiment  object containing gene expression data and
metadata from all libraries in that project. The merged object includes both raw and normalized
counts for all cells from all libraries. Because the same reference index was used to quantify all single-
cell and single-nuclei RNA-seq data, the set of genes is the same in the merged object and the
individual objects. Library-, cell- and gene-speci�c metadata from each of the processed 
SingleCellExperiment  objects are also combined and stored in the merged object. The 
merge.nf  work�ow does not perform batch-correction or integration. The counts in the merged

object are therefore not batch-corrected.

The top 2000 shared high-variance genes are identi�ed from the merged counts matrix by modeling
variance using scran::modelGeneVar()  and specifying library IDs for the block  argument. These
genes are used to calculate library-aware principal components with 
batchelor::multiBatchPCA() . The top 50 principal components were selected and used to

calculate UMAP embeddings for the merged object.

If any libraries included in the ScPCA project contain additional ADT data, the ADT data are also
merged and stored in the altExp  slot of the merged SingleCellExperiment  object. By contrast,
if any libraries included in the ScPCA project are multiplexed and contain HTO data, no merged object
is created. Merged objects were not created for projects with more than 100 samples because of the
computational resources that would be required for working with those objects.

Converting SingleCellExperiment objects to AnnData objects



zellkonverter::writeH5AD()  [62] was used to convert SingleCellExperiment  objects to 
AnnData  format and export the objects as .hdf5  �les. For any SingleCellExperiment  objects

containing an altExp  (e.g., ADT data), the RNA and ADT data were exported and saved separately as
RNA ( _rna.hdf5 ) and ADT ( _adt.hdf5 ) �les. Multiplexed libraries were not converted to 
AnnData  objects, due to the potential for ambiguity in sample origin assignments.

All merged SingleCellExperiment  objects were converted to AnnData  objects and saved as 
.hdf5  �les. If a merged SingleCellExperiment  object contained any ADT data, the RNA and ADT

data were exported and saved separately as RNA ( _rna.hdf5 ) and ADT ( _adt.hdf5 ) objects. In
contrast, if a merged SingleCellExperiment  object contained HTO data due to the presence of
any multiplexed libraries in the merged object, the HTO data was removed from the 
SingleCellExperiment  object and not included in the exported AnnData  object.

Code and data availability

All summarized gene expression data and de-identi�ed metadata are available for download on the
ScPCA Portal, https://scpca.alexslemonade.org/.

Documentation for the Portal can be found at https://scpca.readthedocs.io.

All original code was developed within the following repositories and is publicly available as follows:

The scpca-nf  work�ow used to process all samples available on the Portal can be found at
https://github.com/AlexsLemonade/scpca-nf.
The Single-cell Pediatric Cancer Atlas Portal code can be found at
https://github.com/AlexsLemonade/scpca-portal.
Benchmarking of tools used to build scpca-nf  can be found at
https://github.com/AlexsLemonade/alsf-scpca/tree/main/analysis and
https://github.com/AlexsLemonade/sc-data-integration/tree/main/celltype_annotation.
All code for the underlying �gures can be found at https://github.com/AlexsLemonade/scpca-
paper-�gures.
The manuscript can be found at https://github.com/AlexsLemonade/ScPCA-manuscript.

Discussion

Here, we introduced the ScPCA Portal, a downloadable collection of uniformly processed, summarized
single-cell and single-nuclei RNA-seq data and de-identi�ed metadata from pediatric tumor samples.
The Portal includes 500 samples from over 50 tumor types, making this the most comprehensive
collection of publicly available single-cell RNA-seq datasets from pediatric tumor samples to our
knowledge. Summarized data are available at three di�erent processing stages: un�ltered, �ltered, or
processed objects, permitting users to choose to start from a processed object or perform their own
processing, such as �ltering and normalization. Processed objects containing normalized gene
expression data, reduced dimensionality results from PCA and UMAP, and cell type annotations are
provided to save researchers time and allow users to skip straight to downstream analysis, such as
identifying marker genes or exploring genes of interest. Standardized metadata, containing human-
readable values for all �elds and ontology term identi�ers for a subset of metadata �elds, is included
in a separate metadata �le and the data objects for all samples. Every library includes a quality control
report, which lets users assess data quality and identify low-quality libraries that they may wish to
exclude from further downstream analyses.

https://scpca.alexslemonade.org/
https://scpca.readthedocs.io/
https://github.com/AlexsLemonade/scpca-nf
https://github.com/AlexsLemonade/scpca-portal
https://github.com/AlexsLemonade/alsf-scpca/tree/main/analysis
https://github.com/AlexsLemonade/sc-data-integration/tree/main/celltype_annotation
https://github.com/AlexsLemonade/scpca-paper-figures
https://github.com/AlexsLemonade/ScPCA-manuscript


Data on the Portal is available as either SingleCellExperiment  or AnnData  objects, so users can
work in R or Python with the downloaded data using common analysis systems such as 
Bioconductor  or Scanpy , depending on their preference. Providing data as AnnData  objects also

means users can easily integrate ScPCA data with data and tools available on other platforms. In
particular, the format of the provided AnnData  objects was designed to be mostly compliant with the
requirements of CZI CELLxGENE [63,64,65], but these objects can also be used with UCSC Cell Browser
[66,67] or Kana [68,69]. Additionally, users can choose to download a merged 
SingleCellExperiment  or AnnData  object containing all gene expression data and metadata

from all samples in a project. This is helpful for analyzing multiple samples simultaneously and
performing analyses such as di�erential gene expression or gene set enrichment.

To provide users with cell type annotations, we used two automated methods, SingleR  and 
CellAssign , which use public references. As the publicly available references we used do not

contain tumor cells but only normal cells, we recognize that the annotations we provide are limited.
Despite these limitations, these methods can provide a good starting point for users, particularly in
helping to annotate populations of normal cells that may be present, as normal cells are represented
in the reference.

We also introduced our open-source and e�cient work�ow for uniformly processing datasets
available on the Portal, scpca-nf , which is available to the entire research community. In one
command, scpca-nf  can process raw data from various sequencing types, turning FASTQ �les into
processed SingleCellExperiment  or AnnData  objects ready for downstream analyses. Using
Next�ow as the framework for scpca-nf  means the work�ow is both modular and portable. This
makes it easy to add support for more modalities in the future, such as single-cell ATAC-seq, and
allows others to run the work�ow on their samples in their computing environment, maintaining the
security of protected raw data. Processed output from running scpca-nf  on samples from pediatric
tumors, cell lines, or other model organisms is eligible for submission to the ScPCA Portal, enabling us
to continue increasing the number of samples available to researchers.

Many samples on the Portal have additional sequencing data, including corresponding ADT data from
CITE-seq, cell hashing data, bulk RNA-seq, or spatial transcriptomics, enabling users to gather more
information about a single sample than they could from single-cell or single-nuclei RNA-seq alone.
Samples with CITE-seq have additional information about cell-surface protein expression in individual
cells, which can help determine cell types and correlate RNA to protein expression [32]. Spatial
transcriptomics data on the Portal are not single-cell resolution, making it hard to identify cell types
and spatial patterns from the spatial data alone. By providing matching single-cell RNA-seq, users can
implement analysis tools, like those that use single-cell RNA-seq to deconvolute spatial data, to gain
more insights about the spatial data [70]. Similarly, users can gain more insight from bulk RNA-seq
data available on the Portal by integrating with single-cell RNA-seq data from the same sample [71,72].
The single-cell RNA-seq data available on the Portal can also be used to deconvolute existing bulk
RNA-seq datasets, allowing researchers to infer abundance of di�erent cell types or cell states in bulk
RNA-seq data. Data available on the ScPCA Portal can be used to re-analyze any existing pediatric
cancer datasets with bulk RNA-seq, such as the Pediatric Brain Tumor Atlas [73,74]. This allows
researchers to glean more insight from previously published data without obtaining fresh samples,
saving time and money.

Acknowledgments

We thank the data generators and submitters of the Single-cell Pediatric Cancer Atlas. We also thank
Anna Greene for her role in constructing the Single-cell Pediatric Cancer Atlas funding opportunity.



This work was funded through the Alex’s Lemonade Stand Foundation Childhood Cancer Data Lab
and Childhood Cancer Data Lab Postdoctoral Fellowship (SMF).

Author Contributions

Author Contributions

Allegra G. Hawkins
Methodology, Software, Investigation, Validation, Formal
analysis, Data curation, Writing - Original Draft, Writing -
Review & Editing, Visualization

Joshua A. Shapiro
Methodology, Software, Investigation, Validation, Formal
analysis, Resources, Data curation, Writing - Original
Draft, Writing - Review & Editing, Visualization

Stephanie J. Spielman
Methodology, Software, Investigation, Validation, Formal
analysis, Data curation, Writing - Original Draft, Writing -
Review & Editing, Visualization

David S. Mejia
Methodology, Software, Validation, Data curation, Writing
- Review & Editing, Resources

Deepashree Venkatesh Prasad
Methodology, Software, Validation, Visualization, Writing -
Review & Editing

Nozomi Ichihara Methodology, Software, Writing - Review & Editing

Arkadii Yakovets
Methodology, Software, Validation, Data curation,
Resources, Writing - Review & Editing

Kurt G. Wheeler
Methodology, Software, Validation, Data curation,
Resources, Writing - Review & Editing

Chante J. Bethell Software, Validation, Writing - Review & Editing

Steven M. Foltz Writing - Review & Editing

Jennifer O’Malley Data curation, Supervision, Writing - Review & Editing

Casey S. Greene
Conceptualization, Project administration, Supervision,
Writing - Review & Editing

Jaclyn N. Taroni
Conceptualization, Methodology, Investigation, Validation,
Data curation, Writing - Original Draft, Writing - Review &
Editing, Visualization, Supervision, Project administration

Declarations of Interest

AGH, JAS, SJS, DSM, DVP, NI, AY, KGW, CJB, JO, and JNT are or were employees of Alex’s Lemonade
Stand Foundation, a sponsor of this research.



Figure Titles and Legends

Figure 1:  Overview of ScPCA Portal contents.

A. Barplots showing sample counts across four main cancer groupings in the ScPCA Portal, with each
bar displaying the number of samples for each cancer type. Each bar is shaded based on the number



of samples with each disease timing, and total sample counts for each cancer type are shown to the
right of each bar.

B. Barplot showing sample counts across types of modalities present in the ScPCA Portal. All samples
in the portal are shown under the “All Samples” heading. Samples under the “Samples with additional
modalities” heading represent a subset of the total samples with the given additional modality. Colors
shown for each additional modality indicate the suspension type used, either single-cell or single-
nuclei RNA-seq. For example, 75 single-cell samples and 43 single-nuclei samples have accompanying
Bulk RNA-seq data.

C. Example of a project card as displayed on the “Browse” page of the ScPCA Portal. This project card
is associated with project SCPCP000009  [26,27]. Project cards include information about the number
of samples, technologies and modalities, additional sample metadata information, submitter-provided
diagnoses, and a submitter-provided abstract. Where available, submitter-provided citation
information, as well as other databases where this data has been deposited, are also provided.  



Figure 2:  Overview of the scpca-nf  work�ow.

A. Overview of scpca-nf , the primary work�ow for processing single-cell and single-nuclei RNA-seq
data for the ScPCA Portal. Mapping is �rst performed with alevin-fry  to generate a gene by cell
count matrix, which is read into R  and converted into a SingleCellExperiment  ( SCE ) object. This
SCE  object is exported as the Unfiltered SCE Object  before further post-processing. Next,

empty droplets are �ltered out, and the resulting SCE  is exported as the Filtered SCE Object .
The �ltered object undergoes additional post-processing, including removing low-quality cells,
normalizing counts, and performing dimension reduction including principal components analysis and
UMAP calculation. The object undergoes cell type annotation and is exported as the Processed SCE 
Object . A summary QC report and a supplemental cell type report are prepared and exported.
Finally, all SCE  �les are converted to AnnData  format and exported. Panels B-G show example
�gures that appear in the summary QC report, shown here for SCPCL000001 , as follows [30].

B. The total UMI count for each cell in the Unfiltered SCE Object , ordered by rank. Points are
colored by the percentage of cells that pass the empty droplets �lter.



C. The number of genes detected in each cell passing the empty droplets �lter against the total UMI
count. Points are colored by the percentage of mitochondrial reads in the cell.

D. miQC  model diagnostic plot showing the percent of mitochondrial reads in each cell against the
number of genes detected in the Filtered SCE Object . Points are colored by the probability that
the cell is compromised as determined by miQC .

E. The percent of mitochondrial reads in each cell against the number of genes detected in each cell.
Points are colored by whether the cell was kept or removed, as determined by both miQC  and a
minimum unique gene count cuto�, prior to normalization and dimensionality reduction.

F. UMAP embeddings of log-normalized RNA expression values where each cell is colored by the
number of genes detected.

G. UMAP embeddings of log-normalized RNA expression values for the top four most variable genes,
colored by the given gene’s expression. In the actual summary QC report, the top 12 most highly
variable genes are shown.  



Figure 3:  ScPCA Portal project download �le structure and merged object work�ow.

A. File download structure for an ScPCA Portal project download in SingleCellExperiment  ( SCE )
format. The download folder is named according to both the project ID and the date it was
downloaded. Download folders contain one folder for each sample ID, each containing the three
versions (un�ltered, �ltered, and processed) of the expression data as well as the summary QC report
and cell type report all named according to the ScPCA library ID. The single_cell_metadata.tsv
�le contains sample metadata for all samples included in the download. The README.md  �le provides
information about the contents of each download �le, additional contact and citation information,



and terms of use for data downloaded from the ScPCA Portal. The �les bulk_quant.tsv  and 
bulk_metadata.tsv  are only present for projects that also have bulk RNA-Seq data and contain,

respectively, a gene by sample matrix of raw gene expression as quanti�ed by salmon , and
associated metadata for all samples with bulk RNA-Seq data.

B. File download structure for an ScPCA Portal merged project download in SCE  format. The
download folder is named according to both the project ID and the date it was downloaded.
Download folders contain a single merged object containing all samples in the given project as well as
a summary report brie�y detailing the contents of the merged object. All summary QC and cell type
reports for each individual library are also provided in the individual_reports  folder arranged by
their sample ID. As in panel (A), additional �les single_cell_metadata.tsv , bulk_quant.tsv , 
bulk_metadata.tsv , and README.md  are also included.

C. Overview of the merged work�ow. Processed SCE  objects associated with a given project are
merged into a single object, including ADT counts from CITE-seq data if present, and a merged
summary report is generated. Merged objects are available for download either in SCE  or AnnData
format.

D. Example of UMAPs as shown in the merged summary report. A grid of UMAPs is shown for each
library in the merged object, with cells in the library of interest shown in red and all other cells
belonging to other libraries shown in gray. The UMAP is constructed from the merged object such that
all libraries contribute an equal weight, but no batch correction was performed. The libraries pictured
are a subset of libraries in the ScPCA project SCPCP000003 .  



Figure 4:  Cell type annotation in scpca-nf .

A. Expanded view of the process for adding cell type annotations within scpca-nf , as introduced in
Figure 2A. Cell type annotation is performed on the Processed SCE Object . A celldex  [41]
reference dataset with ontology labels is used as input for annotation with SingleR  [41], and a list of
marker genes compiled from PanglaoDB  [54] is used as input for annotation with CellAssign
[42]. Results from cell type annotation are then added to the Processed SCE Object , and a cell



type summary report with information about reference sources, comparisons among cell type
annotation methods, and diagnostic plots is created. Although not shown in this panel, cell type
annotations are also included in the Processed AnnData Object  created from the Processed 
SCE Object  (Figure 2A).

B. Example heatmap as shown in the cell type summary report comparing annotations with SingleR
and CellAssign . Heatmap cells are colored by the Jaccard similarity index. A value of 1 means that
there is complete overlap between which cells are annotated with the two labels being compared, and
a value of 0 means that there is no overlap between which cells are annotated with the two labels
being compared. The heatmap shown is from library SCPCL000498  [25].



Supplementary Figures and Tables

Table S1. Overview of ScPCA Portal Datasets. This table provides descriptions and sample and
library counts for each project in the ScPCA Portal.

scpca_project_id : ScPCA project unique identi�er. Diagnosis group : Diagnosis group as
shown in Figure 1. Diagnoses : Full set of diagnoses for all samples associated with the project. 
Total number of samples (S) : Number of samples associated with the project. Total number 
of libraries (L) : Number of libraries associated with the project. Due to additional sequencing
modalities and/or multiplexing, projects may have more libraries than samples. All remaining columns
give the number of libraries (as designated with (L) ) with the given suspension type, 10x kit version,
or additional modality.  

Table S2. Summary of references used for cell type annotation with CellAssign . This table
provides a summary of the references used for assigning cell types for ScPCA projects using 
CellAssign . All references were built using all cell types from a speci�ed set of organs present in 
PanglaoDB ’s marker gene list.

scpca_project_id : ScPCA project unique identi�er. Diagnoses : Full set of diagnoses for all
samples associated with the project. ScPCA reference name : Name used to describe the custom
reference. PanglaoDB organs included in reference : A list of all organs included in the
reference with names of organs corresponding to organs listed in PanglaoDB . The reference
includes marker genes for all cell types present in each organ.  



Figure S1:  Results from benchmarking alevin-fry  and CellRanger  performance.

Each panel compares metrics for six representative ScPCA libraries, including three single-cell and
three single-nuclei suspensions, obtained from processing libraries with both alevin-fry  and 
CellRanger .

A. Runtime in minutes (top row) and peak memory in GB (bottom row) for six ScPCA libraries
processed with alevin-fry  and CellRanger . Processing with alevin-fry  was consistently
faster and more memory-e�cient compared to processing with CellRanger .

Panels B-D show only cells present in both the alevin-fry  and CellRanger  output.

B. Comparison of mean gene expression values for six ScPCA libraries processed with alevin-fry
and CellRanger , shown on a log-scale. Each point is a gene, and only genes detected in at least 5



cells are shown.  values shown in the top left corner of each panel re�ect broad agreement in
mean gene expression values between platforms.

C. Comparison of log total UMI counts for six ScPCA libraries processed with alevin-fry  and 
CellRanger . Distributions re�ect broad agreement in the total UMI count per cell between

platforms, although alevin-fry  returned slightly higher values for certain single-cell libraries.

D. Comparison of log total genes detected per cell for six ScPCA libraries processed with alevin-
fry  and CellRanger . Distributions re�ect broad agreement between platforms in the total number
of genes detected per cell between platforms, although alevin-fry  returned slightly higher values
for certain single-cell libraries.  

R2



Figure S2:  Processing additional single-cell modalities in scpca-nf .

A. Overview of the scpca-nf  work�ow for processing libraries with CITE-seq or antibody-derived tag
(ADT) derived data. The work�ow mirrors that shown in Figure 2A with several di�erences accounting
for the presence of ADT data. First, both an RNA and ADT FASTQ �le are required as input to alevin-
fry , along with a TSV �le containing information about ADT barcodes. The gene by cell and ADT by
cell count matrices are produced and read into R  to create a SingleCellExperiment  (SCE) object.
Second, during post-processing, statistics are calculated to �lter cells based on ADT counts, but the
�lter is not applied. ADT counts are also normalized and included in the Processed SCE Object .
Third, the summary QC report will include a CITE-seq  section with additional information about



ADT-level processing. Fourth, the work�ow exports SCE  objects containing both RNA and ADT
results, while separate AnnData  objects for RNA and ADT are exported.

Panels B-D show example �gures that appear in the CITE-seq section of the summary QC report,
shown here for SCPCL000290 .

B. The percent of mitochondrial reads in each cell against the number of genes detected in each cell.
The panel labeled “Keep” displays cells that are retained based on both RNA and ADT counts. The
panel labeled “Filter (ADT only)” displays cells that are �ltered based on only ADT counts. The panel
labeled “Filter (RNA only)” displays cells that are �ltered based on only RNA counts. The panel labeled
“Filter (RNA & ADT)” panel displays cells that are �ltered based on both RNA and ADT counts.

C. Density plots of the log-normalized ADT counts shown for the four most variable ADTs in the
library.

D. UMAP embeddings of log-normalized RNA expression values where each cell is colored by the
expression of the given highly-variable ADT.

E. Overview of the scpca-nf  work�ow for multiplexed libraries. The work�ow mirrors that shown in
Figure 2A with several di�erences accounting for the presence of multiplexed data. First, both an RNA
and HTO FASTQ �le are required as input to alevin-fry , along with a TSV �le providing information
about library pools. The gene by cell and HTO by cell count matrices are produced and read into R  to
create a SingleCellExperiment  (SCE) object. Second, in parallel, the RNA FASTQ �le, the HTO
FASTQ �le, and, if available, a corresponding Bulk RNA FASTQ �le for each sample present in the
multiplexed library are provided to a demultiplexing subprocess. The work�ow calculates
demultiplexing results based on HTO counts, as well as genetic demultiplexing results if the library
has corresponding bulk RNA FASTQ �les. Demultiplexing results are stored in all exported SCE
objects ( Unfiltered , Filtered , and Processed ), but libraries themselves are not
demultiplexed. Third, only SCE  �les are provided for multiplexed libraries; no corresponding 
AnnData  �les are provided.  



Figure S3:  Processing other sequencing modalities with scpca-nf .

A. Overview of the bulk RNA-Seq work�ow. A set of FASTQ �les from libraries sequenced with bulk
RNA-seq are provided as input. Reads are trimmed using fastp , and salmon  is used to map reads
and quantify counts. The quanti�ed gene expression �les output from salmon  are then grouped by
ScPCA Project ID, and a sample by gene count matrix is exported for each Project in TSV format.

B. Overview of the spatial transcriptomics work�ow. The FASTQ �le and tissue image for a given
library are provided as input to spaceranger . The work�ow directly returns the results from
running spaceranger  without any further processing.  



Figure S4:  Evaluation of references available in the celldex package for use with SingleR.

SingleR  was used to annotate ScPCA libraries using four di�erent human-speci�c references from
the celldex  package. Libraries represent three di�erent diagnosis groups in the ScPCA Portal -



Brain and CNS, Leukemia, and Sarcoma - as indicated in the labels for the individual panels. The
distribution of the delta median statistic, calculated for each cell by subtracting the median delta
score from the score of the annotated cell type label, is shown on the y-axis, while the celldex
reference used is shown on the x-axis. Higher values indicate a higher quality cell type annotation,
although there is no absolute scale for these values. Each black point represents a cell, where closed
circles denote cells with high-quality annotations and open circles denote cells with low-quality
annotations, as assessed by SingleR . Red diamonds represent the median delta median score for
all cells with high-quality annotations in that library.  



Figure S5:  Cell type annotation with CellAssign .



Both plots in this �gure are examples of plots that display results from annotating cells with 
CellAssign  that can be found in the cell type summary report, shown here for library 
SCPCL000490 [25].

A. A grid of UMAPs is shown for each cell type annotated using CellAssign , with the cell type of
interest shown in color and all other cells belonging to other cell types shown in gray. The top four cell
types with the greatest number of assigned cells are shown, while all other cells are grouped together
and labeled with All remaining cell types . Any cells that are unable to be assigned by 
CellAssign  are labeled with Unknown cell type .

B. This example heatmap displays a comparison between submitter-provided annotations and
annotations with CellAssign , where heatmap cells are colored by the Jaccard similarity index. A
value of 1 means that there is complete overlap between which cells are annotated with the two
labels being compared, and a value of 0 means that there is no overlap between which cells are
annotated with the two labels being compared.  



Figure S6:  Assessment of cell type annotation quality.



Both plots in this �gure are examples of diagnostic plots in the cell type summary report, shown for
library SCPCL000001  [30].

A. Diagnostic plot showing SingleR  cell type annotation quality. Cell type annotations are shown on
the y-axis, the delta median statistic is shown on the x-axis. The delta median statistic is calculated for
each cell as the di�erence between the SingleR  score of the annotated cell type label and the
median score of all other cell type labels in the reference dataset. Higher values indicate a higher
quality cell type annotation, although there is no absolute scale for these values. Each black point
represents a cell, where closed circles denote cells with high-quality annotations and open circles
denote cells with low-quality annotations, as assessed by SingleR . Red diamonds represent the
median delta median scores for all cells with high-quality annotations associated with the given cell
type label.

B. Diagnostic plot showing CellAssign  cell type annotation quality. Cell type annotations are shown
on the y-axis, and the probability of the annotated cell type as calculated by CellAssign  is shown
on the x-axis. Each row displays probabilities for only the cells associated with the given cell type
annotation, and blue line segments show the probabilities for individual cells in each distribution.
Taller line segments are shown for any distribution with �ve or fewer cells.  



Figure S7:  Comparison of cell type annotations across methods.

This example heatmap from the cell type summary report compares submitter-provided annotations
to annotations with SingleR  and CellAssign , shown for library SCPCL000498  [25]. This
heatmap is only shown in the cell type summary report if submitters provided cell type annotations.
Heatmap cells are colored by the Jaccard similarity index. A value of 1 means that there is complete
overlap between which cells are annotated with the two labels being compared, and a value of 0
means that there is no overlap between which cells are annotated with the two labels being
compared.
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